EECS 42 - MIDTERM \#1

22 February 2001
Name: \qquad Last, First

Signature: \qquad

Guidelines:

1. Closed book. A 2-page summary sheet with formulas is provided at the end of the exam.
2. Show all your work and reasoning on the exam in order to receive credit.
3. Warning: Some problems will be graded with no partial credit, so check your answers.
4. You may use a calculator.
5. Do not unstaple the exam.
6. This exam contains 5 problems worth 20 points each, and corresponding worksheets plus the cover page and the 2-page summary sheet.
7. Please do not ask questions except to point out possible errors or typographical mistakes.

Problem	Points Possible	Your Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	$\mathbf{1 0 0}$	

Problem 1 (20 points)

In the circuit below we are interested in the voltage at nodes X and Y and use nodal analysis.
(a) Some possible nodal equations are given below. Circle the equation that is correct. (If none are correct, then correct one and circle it.)
(a.1) $V_{1} / R_{1}-I_{1}-V_{X} / R_{2}=I_{2}-V_{Y} / R_{3}$
(a.2) $V_{1} / R_{1}+V_{3} / R_{4}=0$
(a.3) $I_{1}+I_{2}+V_{1} / R_{1}+V_{3} / R_{4}+V_{3} / R_{3}=0$
(a.4) $V_{1} / R_{1}+I_{1}-V_{X} / R_{2}+I_{2}+\left(V_{3}-V_{Y}\right) / R_{4}=0$
(a.5) $\left(V_{1}-V_{X}\right) / R_{1}+I_{1}-V_{X} / R_{2}=-I_{2}+\left(V_{Y}-V_{3}\right) / R_{4}$
(a.6) $\left(V_{1}-V_{X}\right) / R_{1}+I_{1}-V_{X} / R_{2}=\left(V_{2}-V_{3}\right) / R_{4}$

(b) What other equation, if any, is needed to solve for V_{X} and V_{Y} ? Write it in the box below, BUT DO NOT SOLVE for V_{X} and V_{Y}.

Problem 1 Worksheet

Problem 2 (20 points)

In the circuit below, the switch is operated at $t=1 \mu \mathrm{sec}$ (in other words, the capacitor is switched from node L to node R).

(a) Find V_{X}, the voltage at node X, for $t<1 \mu \mathrm{sec}$.
a) $V_{X}=$
(Note: Answer must be in the box.)
(b) Find V_{X} for $t=1 \mu \mathrm{sec}$ (just after switch moves).
b) $V_{X}=$
(Note: Answer must be in the box.)
(c) Find V_{X} for $t \rightarrow \infty$.
c) $\quad V_{X}=$
(Note: Answer must be in the box.)
(d) Sketch neatly on the axes below a plot of V_{X} versus time.
(Warning: Neatness and accuracy will be rewarded.)

Problem 2 Worksheet

Problem 3 (20 points)

Find the voltage indicated for each of the following circuits. (The answer MUST be in the box provided.)
(a) Find V_{A}.

$$
V_{A}=
$$

(b) Find $V_{B C}$.

$$
V_{B C}=
$$

(c) Find V_{D}.

$$
V_{D}=
$$

(d) Find V_{E}.

$$
V_{E}=
$$

Problem 3 Worksheet

Problem 4 (20 points)

For the circuit below, calculate the following quantities. (Note that the sign is important and the answer must appear in the box.) This is a DC, not a transient, problem.
(a) P_{1}, the power into (dissipated in) resistor R_{1}.
$P_{1}=$

$$
P_{2}=
$$

$$
P_{3}=
$$

$$
P_{4}=
$$

(d) P_{4}, the power into the current source.

Problem 4 Worksheet

Problem 5 (20 points)

The circuit below consists of two parts: 1) a "black box" that has the nonlinear I-V characteristics shown on graph I_{A} versus V_{A}, and 2) a simple resistor in parallel with a current source. When the switch is open, it is obvious that $\mathrm{V}_{\mathrm{A}}=0$ and $\mathrm{V}_{\mathrm{B}}=4 \mathrm{~V}$.

Use the load-line method to find the approximate value of V_{B} when the switch is closed. (IMPORTANT: You must show your work to receive credit.) (Also note: This is a DC problem, not a transient problem.)

Problem 5 Worksheet

