NODAL ANALYSIS CONTINUED

Lecture 9 review:

- Formal nodal analysis
- Voltage divider example

Today:

- Nodal analysis with floating voltage sources
- Real voltmeters
- Real ammeters
- Parallel resistors
- Current dividers
- Series and parallel capacitors

NODAL ANALYSIS WITH "FLOATING" VOLTAGE SOURCES

A "floating" voltage source is a voltage source for which neither side is connected to the reference node. V_{LL} in the circuit below is an example.

What is the problem? \rightarrow We cannot write KCL at node a or b because there is no way to express the current through the voltage source in terms of $\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}$.
Solution: Define a "supernode" - that chunk of the circuit containing nodes a and b . Express KCL at this supernode.

FLOATING VOLTAGE SOURCES (cont.)

Use a Gaussian surface to enclose the floating voltage source; write KCL for that surface
supernode

We have two unknowns: V_{a} and V_{b}.
We obtain one equation from KCL at supernode: $\mathrm{I}_{1}-\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{R}_{2}}-\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{4}}+\mathrm{I}_{2}=0$
We obtain a second "auxiliary" equation from the property of the voltage source: $\mathrm{V}_{\mathrm{LL}}=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}} \quad$ (often called the "constraint")
$\Rightarrow 2$ Equations \& 2 Unknowns

ANOTHER EXAMPLE

1 Choose reference node (can it be chosen to avoid floating voltage source?)

2 Label unknowns V_{a} and V_{b}

3 Equation at supernode: $\frac{\mathrm{V}_{1}-\mathrm{V}_{\mathrm{a}}}{\mathrm{R}_{1}}=\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{4}}+\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{R}_{2}} \rightarrow \mathrm{~V}_{\mathrm{a}}\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right)+\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{4}}=\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}}$
4 Auxiliary equation: $\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{2} \xrightarrow{\mathrm{~V}_{\mathrm{a}}} \quad-\mathrm{V}_{\mathrm{b}}=-\mathrm{V}_{2}$

$$
\text { Solve: } \begin{aligned}
\mathrm{V}_{\mathrm{a}}\left(\frac{\mathrm{R}_{4}}{\mathrm{R}_{1}}+\frac{\mathrm{R}_{4}}{\mathrm{R}_{2}}+1\right) & =\mathrm{V}_{1} \frac{\mathrm{R}_{4}}{\mathrm{R}_{1}}-\mathrm{V}_{2} & \text { SOLUTION }: & \mathrm{V}_{\mathrm{a}}
\end{aligned}=0
$$

RESISTORS IN PARALLEL

1 Select Reference Node
2 Define unknown node voltages

Note: $I_{s s}=I_{1}+I_{2}$, i.e.,

$$
I_{S S}=\frac{V_{X}}{R_{1}}+\frac{V_{X}}{R_{2}} \Rightarrow V_{X}=I_{S S} \cdot \frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=I_{S S} \cdot \frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

RESULT 1 EQUIVALENT RESISTANCE: $\mathrm{R}_{\|} \equiv \mathrm{R}_{1} \| \mathrm{R}_{2}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
RESULT 2 CURRENT DIVIDER:

$$
\begin{aligned}
& I_{1}=\frac{V_{X}}{R_{1}}=I_{S S} \times \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{2}=\frac{V_{X}}{R_{2}}=I_{S S} \times \frac{R_{1}}{R_{1}+R_{2}}
\end{aligned}
$$

IDENTIFYING SERIES AND PARALLEL COMBINATIONS

Use series/parallel equivalents to simplify a circuit before starting KVL/KCL

IDENTIFYING SERIES AND PARALLEL COMBINATIONS (cont.)

Some circuits must be analyzed (not amenable to simple inspection)

Special cases:
$\mathrm{R}_{3}=0 \quad$ OR $\mathrm{R}_{3}=\infty$

Example: $R_{3}=0 \Rightarrow R_{1}\left\|R_{2} ; R_{4}\right\| R_{5}$ in series; $\quad R_{\text {eq }}=R_{1}\left\|R_{2}+R_{4}\right\| R_{5}$
OR IF $R_{3}=\infty \Rightarrow\left(R_{1}+R_{5}\right) \|\left(R_{2}+R_{4}\right)$

IDEAL AND NON-IDEAL METERS

IDEAL

MODEL OF REAL
DIGITAL VOLTMETER
Note: $\mathrm{R}_{\text {in }}$ may depend on range

$$
\mathrm{R}_{\text {in }} \text { typically } \sim 10 \mathrm{M} \Omega
$$

IDEAL

MODEL OF REAL DIGITAL AMMETER
Note: $\mathrm{R}_{\text {in }}$ usually depends on current range
$\mathrm{R}_{\text {in }}$ typically $\sim 1 \Omega$

REAL VOLTMETERS

Concept of "Loading" as Application of Parallel Resistors

How is voltage measured? Modern answer: Digital multimeter (DMM)
Problem: Connecting leads from voltmeter across two nodes changes the circuit. The voltmeter is characterized by how much current it draws at a given voltage \rightarrow "voltmeter input resistance," R_{in}. Typical value: $10 \mathrm{M} \Omega$. Lets do an example; measure V in voltage divider:

Example: $\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{R}_{2}=100 \mathrm{~K}, \mathrm{R}_{1}=900 \mathrm{~K} \Rightarrow \mathrm{~V}_{2}=1 \mathrm{~V}$
But if $R_{\text {in }}=10 \mathrm{M}, \mathrm{V}_{2}^{\prime}=0.991 \mathrm{~V}$, a 1% error

MEASURING CURRENT

Insert DMM (in current measurement mode) into circuit. But ammeters disturb the circuit. (Note: Ammeters are characterized by their "ammeter input resistance," $\mathrm{R}_{\text {in }}$. Ideally this should be very low. Typical value (in mA range) 1Ω.)

Potential measurement error due to non-zero input resistance:

undisturbed circuit

$$
\mathrm{I}=\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

with ammeter

$$
I_{\text {meas }}=\frac{V_{1}}{R_{1}+R_{2}+R_{\text {in }}}
$$

Example V $=1 \mathrm{~V}: \mathrm{R} 1+\mathrm{R} 2=1 \mathrm{~K} \Omega \quad, \mathrm{Rin}=1 \Omega$

$$
\mathrm{I}=1 \mathrm{~mA} \quad, \quad \mathrm{I}_{\text {meas }}=\frac{1}{1 \mathrm{~K}+1 \Omega} \cong 0.999 \mathrm{~mA} \quad(0.1 \% \text { error })
$$

CAPACITORS IN SERIES

Equivalent capacitance defined by
$\mathrm{i}=\mathrm{C}_{1} \frac{\mathrm{dV}_{1}}{\mathrm{~d}}=\mathrm{C}_{2} \frac{\mathrm{dV}_{2}}{d} \quad \mathrm{~V}_{\mathrm{eq}}=\mathrm{V}_{1}+\mathrm{V}_{2}$ and $\mathrm{i}=\mathrm{C}_{\mathrm{eq}} \frac{\mathrm{V}_{\mathrm{eq}}}{\mathrm{dt}}=\mathrm{C}_{\mathrm{eq}} \frac{\mathrm{d}\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)}{\mathrm{dt}}$

So $\frac{d V_{1}}{d t}=\frac{i}{C_{1}}, \quad \frac{d V_{2}}{d t}=\frac{i}{C_{2}}$,
so $\frac{\mathrm{dV}_{\mathrm{eq}}}{\mathrm{dt}}=\mathrm{i}\left(\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}\right) \equiv \frac{\mathrm{i}}{\mathrm{C}_{\mathrm{eq}}}$
Clearly, $\mathrm{C}_{\mathrm{eq}}=\frac{1}{\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}}=\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
CAPACITORS IN SERIES

CAPACITORS IN PARALLEL

$$
\mathrm{i}(\mathrm{t})=\mathrm{C}_{1} \frac{\mathrm{dV}}{\mathrm{dt}}+\mathrm{C}_{2} \frac{\mathrm{dV}}{\mathrm{dt}}
$$

Equivalent capacitance defined by

Clearly, $\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}$
CAPACITORS IN PARALLEL

