MORE NODAL ANALYSIS

Lecture 10 review:

- Ideal and real instruments
- Series and parallel elements
- Nodal analysis with floating voltage sources

Today:

- Special properties of linear circuits:
- Thevenin and Norton Equivalents
- Examples

Linear Circuits -Special Properties

- Circuits consisting only of linear elements are linear circuits.
- There are simple "equivalent circuits" for "one-port" linear circuits.

TWO-TERMINAL LINEAR RESISTIVE NETWORKS ("One Port" Circuit)

Interconnection of two-terminal linear resistive elements with only two "accessible" terminals

I-V CHARACTERISTICS OF LINEAR TWO-TERMINAL NETWORKS

What is the easy way to find the I-V graph?

Apply v, measure i, or vice versa

First find open-circuit V
$\mathrm{V}=5 \mathrm{~V}$ if $\mathrm{i}=0$
Now find Short-circuit I

$$
\mathrm{i}=-1 \mathrm{~mA} \text { if } \mathrm{v}=0
$$

I-V CHARACTERISTICS OF LINEAR TWO-TERMINAL NETWORKS

Lets do same thing but with unassociated signs

Apply v, measure i, or vice versa

First find open-circuit V
$\mathrm{v}=5 \mathrm{~V}$ if $\mathrm{i}=0$
Now find Short-circuit I
$\mathrm{i}=+1 \mathrm{~mA}$ if $\mathrm{v}=0$

I-V CHARACTERISTICS OF LINEAR TWO-TERMINAL NETWORKS

Apply v, measure i, or vice versa

First consider change in V , eg $\mathrm{V}=2.5 \mathrm{~V}$, not 5 V

Now consider change in R (with V back at 5 V)

Consider how the graph changes with differences in V and R.

Cle arly by varying \mathcal{V} and \mathcal{R} we can produce an arbitrary line ar graph ...in other words this circuit can produce any line ar grapf

BASIS OF THÉVENIN THEOREM

- All linear one-ports have linear I-V graph
- A voltage source in series with a resistor can produce any linear I-V graph by suitably adjusting V and I

THUS

We define the voltage-source/resistor combination that replicates the I-V graph of a linear circuit to be the Thévenin equivalent of the circuit. The voltage source V_{T} is called the Thévenin equivalent voltage and the resistance R_{T} is called the Thévenin equivalent resistance.

Thévenin Equivalent Circuit

This circuit is equivalent to any circuit, that is by suitably choosing V_{T} and R_{T} it will have the same $\mathrm{I}-\mathrm{V}$ graph

So how do we choose V_{T} and R_{T} ?

FINDING $\mathrm{V}_{\mathrm{T}}, \mathrm{R}_{\mathrm{T}} \mathrm{BY}$ MEASUREMENT

$1 \mathrm{~V}_{\mathrm{T}}$ is the open-circuit voltage V_{Oc} (i.e., $\mathrm{i}=0$)

2a) If we short the output clearly $I=-V_{T} / R_{T}$ thus R_{T} is the ratio of V_{OC} to $-\mathrm{i}_{\mathrm{Sc}}$, the short-circuit current

$$
\mathrm{R}_{\mathrm{T}}=-\frac{\mathrm{V}_{\mathrm{OC}}}{\mathrm{I}_{\mathrm{SC}}}
$$

2b) If $\mathrm{V}_{\mathrm{T}}=0$, you need to apply test voltage, then

$$
\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{V}_{\text {TEST }}}{\mathrm{i}}
$$

FINDING $\mathrm{V}_{\mathrm{T}}, \mathrm{R}_{\mathrm{T}} \mathrm{BY}$ ANALYSIS

1 Calculate $\mathrm{V}_{\mathrm{OC}} . \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OC}}$

2 Turn off all independent sources and find equivalent R at terminals

NORTON EQUIVALENT CIRCUIT

Corollary to Thévenin: $\mathrm{I}_{\mathrm{N}}=-\mathrm{I}_{\mathrm{SC}}$ (short-circuit current) (associated)
R_{N} is found the same way as for Thévenin equivalent

EXAMPLE

Find the Thévenin and Norton equivalents of:

Find $V_{A B}=V_{O C}$ from voltage divider. Left to right:
(4 V rise across $25 \mathrm{~K}+75 \mathrm{~K}$) \Rightarrow 3 V across $75 \mathrm{~K}, 1 \mathrm{~V}$ across 25 k .
equivalent to

and equivalent to

