1

MORE NODAL ANALYSIS

Lecture 10 review:

- Ideal and real instruments
- Series and parallel elements
- Nodal analysis with floating voltage sources

Today:

- Special properties of linear circuits:
 - Thevenin and Norton Equivalents
- Examples

Linear Circuits - Special Properties

- Circuits consisting only of linear elements are linear circuits.
- There are simple "equivalent circuits" for "one-port" linear circuits.

TWO-TERMINAL LINEAR RESISTIVE NETWORKS ("One Port" Circuit)

Interconnection of two-terminal linear resistive elements with only two "accessible" terminals

I-V CHARACTERISTICS OF LINEAR TWO-TERMINAL NETWORKS

Apply v, measure i, or vice versa

v=5V if i = 0

Now find Short-circuit I

$$i = -1mA$$
 if $v = 0$

What is the easy way to find the I-V graph?

I-V CHARACTERISTICS OF LINEAR TWO-TERMINAL NETWORKS

Lets do same thing but with *unassociated* signs

Apply v, measure i, or vice versa

First find open-circuit V

v=5V if i = 0

Now find Short-circuit I

i = +1mA if v = 0

I-V CHARACTERISTICS OF LINEAR TWO-TERMINAL NETWORKS

Clearly by varying V and R we can produce an arbitrary linear graph ... in other words this circuit can produce *any* linear graph

BASIS OF THÉVENIN THEOREM

- All *linear* one-ports have linear I-V graph
- A voltage source in series with a resistor can produce any linear I-V graph by suitably adjusting V and I

THUS

We define the voltage-source/resistor combination that replicates the I-V graph of a linear circuit to be the Thévenin equivalent of the circuit. The voltage source V_T is called the Thévenin equivalent voltage and the resistance R_T is called the Thévenin equivalent resistance.

Thévenin Equivalent Circuit

choosing V_T and R_T it will have the same I-V graph

So how do we choose V_T and R_T ?

FINDING V_T , R_T BY MEASUREMENT

1 V_T is the open-circuit voltage V_{OC} (i.e., i = 0)

2a) If we short the output clearly I = $-V_T/R_T$ thus R_T is the ratio of V_{OC} to $-i_{SC}$, the short-circuit current

2b) If $V_T = 0$, you need to apply test voltage, then

FINDING V_T, R_T BY ANALYSIS

- 1 Calculate V_{OC} . $V_T = V_{OC}$
- 2 Turn off all independent sources and find equivalent R at terminals

NORTON EQUIVALENT CIRCUIT

Corollary to Thévenin: $I_N = -I_{SC}$ (short - circuit current) (associated) R_N is found the same way as for Thévenin equivalent

EXAMPLE

Find the Thévenin and Norton equivalents of:

