Lecture 27/28

Last time:

NMOS = n-channel Metal Oxide Semiconductor Field Effect Transistor

CMOS is a process that uses both NMOS and PMOS devices (complementary)

NMOS and PMOS Switch Models

Today -

- NMOS and PMOS models including Capacitance
-CMOS inverter electrical behavior
-Glimpse of layout (more next time)

NMOS Circuit Model

NMOS transistor has an equivalent resistance $R_{D N}$ when closed

The circuit symbol
NMOS SWITCH

- If $\mathrm{V}_{\mathrm{GS}} \approx 0$, Switch is open (e.g. $\mathrm{V}_{\mathrm{S}}=0, \mathrm{~V}_{\mathrm{G}}=0$.)
- If $\mathrm{V}_{\mathrm{GS}} \gg \mathrm{V}_{\mathrm{T}}$, Switch is closed
(e.g. $\mathrm{V}_{\mathrm{S}}=0, \mathrm{~V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{DD}}$.)

PMOS Circuit Model

PMOS transistor has an equivalent resistance $\boldsymbol{R}_{D P}$ when closed

The circuit symbol

PMOS SWITCH

- If $\mathrm{V}_{\mathrm{GS}} \approx 0$, Switch is open

The Switch model
(e.g. $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{DD}}$.)

- If $\left|\mathrm{V}_{\mathrm{GS}}\right| \gg\left|\mathrm{V}_{\mathrm{T}}\right|$, Switch is closed
(e.g. $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{G}}=0$.)

THE BASIC STATIC CMOS INVERTER

Example for Discussion:
NMOS: $V_{\text {Tn }}=1 V$
PMOS: $V_{T p}=-1 V$
Let $V_{D D}=2.5 \mathrm{~V}$
For $\mathrm{V}_{\text {in }}>1.5 \mathrm{~V}$ NMOS on, PMOS off

For $\mathrm{V}_{\text {in }}<1 \mathrm{~V}$ NMOS off, PMOS on

Model Refinements:
 Add Gate Capacitances Node connected to the gate:

The gate capacitance is the dominant capacitance, perhaps $60-80 \%$ of total node capacitance. So we will focus just on it.

To compute it we need the gate capacitance per unit area ($\mathrm{e}_{0 \mathrm{x}} / \mathrm{tox}$) and the gate area ($\mathrm{W} \times \mathrm{L}$).

Note that the switches are NOT independent , in fact they are "ganged"

First Order CMOS Inverter Model

The switches are "ganged" (move together) since they have essentially the same trip voltages

NMOS is closed when $V_{\text {in }}$ high ; PMOS is open
PMOS is closed when $\mathrm{V}_{\text {in }}$ low ; NMOS is open
Reduce to a single switch: (Whose position depends on $\mathrm{V}_{\text {in }}$)

"Cascaded" CMOS Inverters

What's connected to the $v_{\text {out }}$ node? Answer: One or more logic gates, for example another CMOS inverter
\mathcal{N} ote that there are no resistors, capacitors, inductors in a $\subset M O S$ circuit .. there are only $\mathcal{N} \mathcal{M O S}$ and PMOS transistors.

Cascaded Identical CMOS Inverter Circuit Model

Full switch model showing gate capacitances.

Note that it is the gate capacitance of Stage N +1 combined with the drain resistance of Stage N that slow the gate charging of Stage $\mathrm{N}+1$.

LOGIC STAGE N
STAGE N +1

Simpler Representation

NMOS and PMOS transistors have the same logic thresholds, but operate in a complementary fashion \rightarrow reduce to a single switch per

Simpler Representation

NMOS and PMOS transistors have the same logic thresholds, but operate in a complementary fashion \rightarrow reduce to a single switch per

Transitions of interest:

1. $v_{\text {in } 1}$ goes high : switch for inverter 1 moves to " D " position from previous "U" position (and subsequently output switch goes to "U")
2. $v_{i n 1}$ goes low : switch for inverter 1 moves to " U " position from previous "D" position (and subsequently output switch goes to "D")

Gate-Delay Analysis -- Identify key Components

Basic case: one inverter driving another

Suppose $\mathrm{V}_{\mathrm{in} 1}$ goes from high to low. $\rightarrow \mathrm{MP}_{3}$ turns on and MN_{1} turns off.
Then $\mathrm{V}_{\text {out } 1}$ goes from low to high (but a little bit later ... i.e. delayed).
Of course $V_{\text {in2 }}$ is the same as $V_{\text {out1 }}$.
Thus $\mathrm{V}_{\text {out2 }}$ goes from high to low (delayed even more from the input $\mathrm{V}_{\mathrm{in} 1}$).

How to define the inverter delay

Suppose $V_{\text {in } 1}$ goes from low to high.

$\mathrm{V}_{\text {out } 1}$ goes from V_{DD} to ground.
We define the inverter stage delay τ as the time until $V_{\text {out1 }}$ reaches $V_{D D} / 2$.
Because when it reaches this value, the following stage will sense that its input has switched from high to low.

The properly designed stage will have nearly the identical stage delay time for rising input as for falling input. (Design proper ratio of W_{p} to W_{n})

Cascaded Identical CMOS Inverter Circuit Model

gate capacitances (say
60-90\% of total). Hence
we omit the others for
simplicity fere.

Simpler Representation

Transitions of interest:

1. $V_{\text {in } 1}$ increases above $V_{T h}$: switch for inverter 1 moves to " D " position from previous "U" position. Of course $V_{\text {out } 2}$ will follow (switch up).
2. $V_{i m 1}$ decreases below $V_{T I}$: switch for inverter 1 moves to "U" position from previous "D" position. Of course $V_{\text {out } 2}$ will follow (switch down).

Where's the Delay?

Suppose the switch moves instantaneously ... what is the origin of gate delay?

Cascaded inverters \rightarrow input capacitance of the second inverter ("the load") must be charged (or discharged) by current from the first inverter ("the driver") ... this takes time! (And there are additional capacitances at this node...)

But we can compute the delay easily. It is just an RC delay. If we define the switching delay as the time for the output voltage to swing halfway to its new steady-state value, we will find the switching delay is 0.69 RC .

Remember if $\left.V(t)=V_{D D} \exp (-t / R C)\right]$ then $V(t)=V_{D D} / 2$ at $t=0.69 R C$.

[Because $0.5=\exp (-0.69)$]

Where's the Delay?

Equivalent circuit for transition 1: note that $v_{\text {out }}(t=0+)=V_{D D}$
Shaded areas play no role in finding $v_{\text {out }}(t)$.
So lets redraw the circuit with essential elements only \qquad eliminate shaded stuff.

Core Circuit for "Pull-Down" Transition

Circuit only contains one resistor and two capacitors

Capacitors $C_{G p}$ and $C_{G n}$... how can they be combined into one?

Capacitors share one node; the other nodes are held at constant voltages.

KCL: currents sum at common node, ie node capacitance is SUM (parallel capacitor formula).

"Virtually Parallel" Capacitors

Pull-Down Equivalent Circuit

Two capacitors add for finding the charging current \rightarrow applies to gate capacitances

Before solving le ts once more associate circuit above to the actual inverter circuit.

Equivalent circuit vs actual circuit

1) Remove inactive device
2) Replace load devices by the ir input equivalents
3) Replace $\mathfrak{N N O S}$ pull.
 down by by its output equivalent.

Gate Delay from Pull-Down Equivalent Circuit

Capacitor is precharged to V_{DD} and discharged to ground through resistance R_{n}.

We can compute the delay easily. It is just an RC delay.
If we define the switching delay as the time for the output voltage to swing halfway to its new steady-state value, we will find the switching delay is $0.69 R \mathrm{C}$. [remember $0.5=\exp (-0.69)$]

Typical values:

Consider " $0.25 \mu \mathrm{~m}$ technology" with a typical NMOS device $0.25 \mathrm{X} 1 \mu \mathrm{~m}$ as pulldown

The typical $R_{D N}$ value is $4 \Omega \Omega$ and the typical minimum load value is 5 fF . Thus RC = 20 pS and the stage delay would be $.69 \times 20$ or 14 pS .

