Lecture 28 CMOS LOGIC

Lectures 21:

NMOS Switching Model PMOS Switching Model CMOS inverter and Switching Model

TODAY:

CMOS Logic Gates: NAND, NOR Delay in Inverters and Logic Gates Top view of layout

NMOS Switching Summary

Pull-Down Operation

The job of R is to pull down the capacitance from its initial voltage of V_{DD} to V_{DD} /2. And at almost constant current (= I_{DS}).

3

NMOS TRANSISTOR STRUCTURE •NMOS = N-channel Metal Oxide Silicon Transistor "Metal" gate (Al or Si) gate oxide insulator P-type Silicon

- The key elements of the layout are a source and drain region, a thin oxide region and a gate.
 - Lets look at a top view of how a device might be drawn

MOSFET "Identification"

Poly line crossing a thin oxide region \rightarrow MOSFET

Is oxide region inside the n-well? If Yes, then PMOS; If No, then NMOS

Basic CMOS Inverter

9

CMOS DIGITAL LOGIC

NAND gate

Making a NAND gate:

NMOS portion: both inputs need to be high for output to be low \rightarrow series

PMOS portion: either input can be low for output to be high \rightarrow parallel

W Oldham

CMOS NAND GATE

NMOS switches in series from output to ground; PMOS switches in parallel from output to the supply (Here we left out the A-A and B-B connection for clarity)

W Oldham

NAND Gate Pull-Up Model*

$$\tau = \mathsf{RC} = \mathsf{R}_{\mathsf{p}}\mathsf{C} = \mathsf{R}_{p}(\mathsf{C}_{Gn} + \mathsf{C}_{Gp})$$

* For first-order analysis we consider only gate capacitance. Remember: we must add drain and interconnect for accurate estimates. $_{12}$

W Oldham

NAND Gate Pull-Down Model*

* For first-order analysis we consider only gate capacitance.

LOADS

We have been considering a single gate as load. But in real designs the output of one gate may drive many gates. We call the number of driven gates the *Fanout*.

Definition of Fanout

Fanout = number of gates that are connected to the driver

Fanout leads to increased capacitive load (and higher delay)

Fanout

Fanout is always \geq 1 (there is always a load)

Gate capacitances sum and are charged by the driver resistance

Fanout

NAND gate 1 drives the inputs to 2 oneinput NAND gates and one 3-input NAND gate

What capacitance does the output of NAND gate 1 drive?

