Review of charging and discharging in RC Circuits (an enlightened approach)

- Before we continue with formal circuit analysis - lets review RC circuits
- Rationale: Every node in a circuit has capacitance to ground, like it or not, and it's the charging of these capacitances that limits real circuit performance (speed)

Relevance to digital circuits:
We communicate with pulses
We send beautiful pulses out

But we receive lousy-looking pulses and must restore them

RC charging effects are responsible So lets review them.

Simplification for time behavior of RC Circuits

- Before any input change occurs we have a dc circuit problem (that is we can use dc circuit analysis to relate the output to the input).
- Long after the input change occurs things "settle down" Nothing is changing So again we have a dc circuit problem.

We call the time period during which the output changes the transient

We can predict a lot about the transient behavior from the pre- and post-transient dc solutions

What environment do pulses face?

- Every wire in a circuit has resistance.
- Every junction (called nodes) has capacitance to ground and other nodes.
- The active circuit elements (transistors) add additional resistance in series with the wires, and additional capacitance in parallel with the node capacitance.

A pulse originating at node I will arrive delayed and distorted at node \mathbf{O} because it takes time to charge C through R

If we focus on the circuit which distorts the pulses produced by Vin, it consists simply of R and C . (Vin is just the time-varying source which produces the input pulse.)

The RC Circuit to Study

(All single-capacitor circuits reduce to this one)

- R represents total resistance (wire plus whatever drives the input node)
- C represents the total capacitance from node to the outside world (from devices, nearby wires, ground etc)

RC RESPONSE

Case 1 - Rising voltage. Capacitor uncharged: Apply + voltage step

- Vin "jumps" at $t=0$, but Vout cannot "jump" like Vin. Why not?
(Ge Because an instantaneous change in a capacitor voltage would require instantaneous increase in energy stored $\left(1 / 2 C V^{2}\right)$, that is, infinite power. (Mathematically, V must be differentiable: $\mathrm{I}=\mathrm{CdV} / \mathrm{dt}$)

V does not "jump" at $\mathrm{t}=0$, i.e. $\mathrm{V}\left(\mathrm{t}=0^{+}\right)=\mathrm{V}\left(\mathrm{t}=0^{-}\right)$
Therefore the dc solution before the transient tells us the capacitor voltage at the beginning of the transient.

RC RESPONSE

Case 1 - Capacitor uncharged: Apply voltage step

- Vout approaches its final value asymptotically (It never quite gets to V1, but it gets arbitrarily close). Why?
After the transient is over (nothing changing anymore) it means $\mathrm{d}(\mathrm{V}) / \mathrm{dt}$ $=0$; that is all currents must be zero. From Ohm's law, the voltage across R must be zero, i.e. Vin = Vout.
That is, Vout $\rightarrow \mathrm{V} 1$ as $\mathrm{t} \rightarrow \infty$. (Asymptotic behavior)
Again the dc solution (after the transient) tells us (the asymptotic limit of) the capacitor voltage during the transient.

RC RESPONSE

Example - Capacitor uncharged: Apply voltage step of 5 V

- Clearly Vout starts out at 0 V (at $\mathrm{t}=0^{+}$) and approaches 5 V .
- We know this because of the pre-transient dc solution $(\mathrm{V}=0)$ and post-transient dc solution ($\mathrm{V}=5 \mathrm{~V}$).

So we know a lot about Vout during the transient - namely its initial value, its final value, and we know the general shape .

RC RESPONSE: Case 1 (cont.)

Exact form of Vout?

Equation for Vout: Do you remember general form?

$$
\mathrm{V}_{\text {out }}=\mathrm{V}_{1}\left(1-\mathrm{e}^{-t / \tau}\right)
$$

Review of simple exponentials.

Rising Exponential from Zero

$$
V_{\text {out }}=V_{1}\left(1-e^{-t / \tau}\right)
$$

Falling Exponential to Zero

$$
V_{\text {out }}=V_{1} e^{-t / \tau}
$$

$$
\text { at } \mathrm{t}=0, \quad \mathrm{~V}_{\text {out }}=\mathrm{V}_{1} \text {, and }
$$

$$
\text { at } t \rightarrow \infty, \quad V_{\text {out }} \rightarrow 0, \text { also }
$$

$$
\text { at } \mathrm{t}=\tau, \quad \mathrm{V}_{\text {out }}=0.37 \mathrm{~V}_{1}
$$

237,

Further Review of simple exponentials.

Rising Exponential from Zero

$$
V_{\text {out }}=V_{1}\left(1-e^{-t / \tau}\right)
$$

Falling Exponential to Zero

$$
V_{\text {out }}=V_{1} e^{-t / \tau}
$$

We can add a constant (positive or negative)

Further Review of simple exponentials.

Rising Exponential

$$
\mathrm{V}_{\text {out }}=\mathrm{V}_{1}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)+\mathrm{V}_{2} \quad \mathrm{~V}_{\text {out }}=\mathrm{V}_{1} \mathrm{e}^{\mathrm{et} / \tau}+\mathrm{V}_{2}
$$

Falling Exponential

Both equations can be written in one simple form: $V_{\text {out }}=A+B^{-t / \tau}$ Initial value ($\mathrm{t}=0$) : $\mathrm{V}_{\text {out }}=\mathrm{A}+\mathrm{B}$. Final value ($\mathrm{t} \gg \tau$): $\mathrm{V}_{\text {out }}=\mathrm{A}$

Thus: if $\mathrm{B}<0$, rising exponential; if $\mathrm{B}>0$, falling exponential

RC RESPONSE: Case 1 (Rising exponential)

- How is τ related to R and C ?
- If C is bigger, it takes longer $(\tau \uparrow)$.
- If R is bigger, it takes longer $(\tau \uparrow)$.
\otimes Thus, τ is proportional to RC.
In fact, $\tau=\mathrm{RC}$!
Thus, $\quad V_{\text {out }}=V_{1}\left(1-e^{-t / \tau}\right)$

But $\mathrm{i}_{\mathrm{R}}=\mathrm{i}_{\mathrm{C}}$!

$$
\begin{gathered}
\text { Thus, } \frac{V_{\text {in }}-V_{\text {out }}}{R}=C \frac{d V_{\text {out }}}{d t} \\
\text { or } \\
\frac{d V_{\text {out }}}{d t}=\frac{1}{R C}\left(V_{\text {in }}-V_{\text {out }}\right)
\end{gathered}
$$

RC RESPONSE Case 1 (cont.)

Proof that $\mathrm{V}_{\text {out }}=\mathrm{V}_{1}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}\right)$
We have: $\frac{d V_{\text {out }}}{d t}=\frac{1}{R C}\left(V_{\text {in }}-V_{\text {out }}\right)$
Proof by substitution:
But $V_{\text {in }}=V_{1}=$ constant
and $V_{\text {out }}=0$ at $t=0^{+}$
I claim that the solution to this first-order linear differential equation is:

$$
\mathrm{V}_{\mathrm{out}}=\mathrm{V}_{1}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}\right)
$$

$$
\begin{gathered}
\frac{d V_{\text {out }}}{d t} \stackrel{?}{=} \frac{1}{\boldsymbol{R C}}\left(V_{\text {in }}-V_{\text {out }}\right) \\
\downarrow \\
t / \frac{\mathrm{V}_{1}}{\mathrm{RC}} e^{-t / R C} \xrightarrow{?} \frac{1}{\boldsymbol{R C}}\left(V_{1}+V_{1}\left(1+e^{-t / R C}\right)\right) \\
\quad \begin{array}{c}
\text { clearly }
\end{array} \\
\frac{\mathrm{V}_{1}}{\mathrm{RC}} e^{-t / R C}=\frac{V_{1}}{\boldsymbol{R C}} e^{-t / R C} \\
\text { and }
\end{gathered}
$$

$$
\mathrm{V}_{\text {out }}=0 \text { at } \mathrm{t}=0^{+} \quad \mathrm{OK}
$$

RC RESPONSE (cont.)

Generalization

Vin switches at $t=0$; then for any time interval $t>0$, in which Vin is a constant, Vout is always of the form:

$$
V_{\text {out }}=A+B e^{-t / \tau}
$$

We determine A and B from the initial voltage on C, and the value of Vin. Assume Vin "switches" at $\mathrm{t}=0$ from Vco to V1:
First, at $t=0 \quad V_{C} \equiv V_{C o} \quad$ initial voltage
(Thus, $\mathrm{A}+\mathrm{B}=\mathrm{V}_{\mathrm{C}}$
as $\mathrm{t} \rightarrow \infty, \mathrm{V}_{\mathrm{C}} \rightarrow \mathrm{V}_{1}$
(- Thus, $A=V_{1} \Rightarrow \mathrm{~B}=\mathrm{V}_{\mathrm{Co}}-\mathrm{V}_{1}$

