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Review of charging and discharging in RC Circuits
(an enlightened approach)

• Before we continue with formal circuit analysis - lets review RC circuits

• Rationale:  Every node in a circuit has capacitance to ground, like it or
not, and it’s the charging of these capacitances that limits real circuit
performance (speed)

Relevance to digital circuits:

We communicate with pulses

We send beautiful pulses out

But we receive lousy-looking pulses
and must restore them
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RC charging effects are responsible …. So lets review them.
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Simplification for time behavior of RC Circuits
• Before any input change occurs we have a dc circuit problem (that is

we can use dc circuit analysis to relate the output to the input).

• Long after the input change occurs things “settle down” …. Nothing is
changing …. So again we have a dc circuit problem.

We call the time period
during which the output
changes the transient
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We can predict a lot about the
transient behavior from the pre- and

post-transient dc solutions
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What environment do pulses face?

• Every wire in a circuit has resistance.

• Every junction (called nodes) has capacitance to ground and other nodes.
• The active circuit elements (transistors) add additional resistance in series

with the wires, and additional capacitance in parallel with the node
capacitance.

A pulse originating at node I will
arrive delayed and distorted at
node O because it takes time to
charge C through R

I O
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If we focus on the circuit which distorts the pulses produced by Vin, it
consists simply of R and C.  (Vin is just the time-varying source

which produces the input pulse.)
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The RC Circuit to Study
(All single-capacitor circuits reduce to this one)

• R represents total resistance (wire plus whatever drives the
input node)

Input node Output node

ground

R

C

•   C represents the total capacitance from node to the outside 
world (from devices, nearby wires, ground etc)
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RC RESPONSE

• Vin “jumps” at t=0, but Vout cannot “jump” like Vin. Why not?

Case 1 – Rising voltage.  Capacitor uncharged: Apply + voltage step

F Because an instantaneous change in a capacitor voltage would
require instantaneous increase in energy stored (1/2CV²), that is,
infinite power.  (Mathematically, V must be differentiable: I=CdV/dt)
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  V does not “jump” at t=0 , i.e. V(t=0+) = V(t=0-) 
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Therefore the dc solution before the transient tells us the capacitor
voltage at the beginning of the transient.
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RC RESPONSE

Case 1 – Capacitor uncharged: Apply voltage step

After the transient is over (nothing changing anymore) it means d(V)/dt
= 0 ; that is all currents must be zero.  From Ohm’s law, the voltage
across R must be zero, i.e. Vin = Vout.

• Vout approaches its final value asymptotically (It never quite
gets to V1, but it gets arbitrarily close).  Why?

F That is, Vout → V1 as t → ∞.    (Asymptotic behavior)
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Again the dc solution (after the transient) tells us (the asymptotic limit
of) the capacitor voltage during the transient.
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RC RESPONSE

Example – Capacitor uncharged: Apply voltage step of 5 V

• We know this because of the pre-transient dc solution (V=0) and
post-transient dc solution (V=5V).

• Clearly Vout starts out at 0V ( at t = 0+)  and approaches 5V.
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So we know a lot about Vout during the transient - namely its initial
value, its final value , and we know the general shape .
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RC RESPONSE: Case 1 (cont.)
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Exact form of Vout?
Equation for Vout: Do you remember
general form?

?

Exponential!

Vout Input node Output node
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Vout = V1(1-e-t/τ)
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Review of simple exponentials.

Rising Exponential from Zero Falling Exponential to Zero

at t = 0, Vout = 0 ,  and

at t à   , Vout à V1 also

at t = τ,  Vout = 0.63 V1

8

at t = 0, Vout = V1 ,  and

           at t à   , Vout à 0,   also

at t = τ,  Vout = 0.37 V1

8
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Vout = V1(1-e-t/τ) Vout = V1e-t/τ
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Further Review of simple exponentials.

Rising Exponential from Zero Falling Exponential to Zero

We can add a constant (positive or negative)

.63V1+ V2

Vout

0

V1 + V2

time0 τ

V2

time
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τ

.37V1 + V2

V2

Vout = V1(1-e-t/τ) Vout = V1e-t/τ

Vout = V1(1-e-t/τ) + V2 Vout = V1e-t/τ + V2
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Further Review of simple exponentials.
Rising Exponential Falling Exponential

Both equations can be written in one simple form:

Thus:  if B < 0, rising exponential;  if B > 0, falling exponential

Initial value (t=0) : Vout = A + B.      Final value (t>>τ): Vout = A

time

Vout

0
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Here B > 0

Vout

0

A

time0

A+B

Here B < 0

Vout = V1(1-e-t/τ) + V2
Vout = V1e-t/τ + V2

Vout = A + Be-t/τ 
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RC RESPONSE: Case 1 (Rising exponential)

• How is τ related to R and C ?
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– If C is bigger, it takes longer (τ↑).
– If R is bigger, it takes longer (τ↑).
?Thus, τ is proportional to RC.

F In fact, τ = RC !

@ Thus,

Vin

R
Vout

CiC
iR Vout = V1(1-e-t/τ)

Vout = V1(1-e-t/τ)
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RC RESPONSE: Case 1 (cont.)
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RC RESPONSE Case 1 (cont.)
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RC RESPONSE (cont.)

Generalization

Vin switches at t = 0; then for any time interval t > 0, in which Vin is a
constant, Vout is always of the form:

We determine A and B from the initial voltage on C, and the
value of Vin. Assume Vin “switches” at t=0 from Vco to V1:

 voltageinitial     VV     0tat    First, CoC ≡=

F Thus, CoVBA =+

1C VV ,t  as →∞→

F Thus, 1Co VVB −=⇒1VA =
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Vout = A + Be-t/τ 


