EECS 42 - Introduction to Electronics for Computer Science

Spring 2003, Dept. EECS, UC Berkeley

Prof. A. R. Neureuther
510 Cory 642-4590
Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee42/

Topical Coverage Final Exam

5-8 PM Tuesday, May 20 room 277 Cory

Closed Book - Device Equations Provided
Bring Calculator, Paper provided
Review Session (11-12:30), Monday, May $1^{\text {th }}$, room TBA
Office Hours: $1^{\text {st }}$ week regular; ($\mathbf{1 9}^{\text {th }} 2 \mathrm{C}, 3 \mathrm{~K} 4 \mathrm{~N}, 2 \mathbf{2 0}^{\text {th }} \mathbf{1 1 N}, 1 \mathrm{C}, 2 \mathrm{~K}$)
Schwarz and Oldham Material followed by skills
Chapter 2: all except 2.4 Loop Analysis, 2.6 and 2.7, light on 2.5
Node analysis of circuits with up to 8 branches, Voltage and current dividers
Chapter 3: all
Equivalent circuits: Thevenin and Norton; Nonlinear loads and load lines
Chapter 4: all but only ideal op-amps
Dependent sources, gain, input and out put impedance; Ideal Op-Amps; Comparators (15).
Chapter 5: all light on 5.3 and very limited inductor circuits.
Chapter 8.1: Only 8.1 EE 40/42 solution method; KCL to get differential equation; pulses
Chapter 10: no flip-flops Gates and logic functions; Timing diagrams (12)
Lectures 16-17, O\&S pp. 522-524, 604-611 Static Logic with state dependent devices
Device I vs. V curves and load line method; Static Power
Simple inverter and voltage transfer function; Complementary Pull-Up and Pull-Down (CMOS)
Lectures 18-22 O\&S pp. 604-618 and viewgraphs: Dynamic Logic
Dynamic (Transient) Switched Resistor Model and 0.69RC delay;
Worst case propagation delay, Cascade propagation delay, Dynamic Power CV ${ }^{2}$
Use of Latches and designing clock delay
Lectures 23-24, O\&S pp. 481-499, 511-527, 594-598, Device physics and models
Diode equation, perfect rectifier and large signal models and use in circuits.
Carrier motion as basis for conductance and conductance-resistance of MOS

Likely Exam Emphasis

Transient

Ideal Op-Amps, Dependent Sources, Gain, Thevenin resistance
Diode circuit analysis and signal processing
Static analysis of logic gates using the I vs. V model for EE42
CMOS Logic Functions, Delay,
Timing Diagrams, Latches

EE 42 Device

$$
\begin{aligned}
& I_{O U T-S A T-D}=k_{D}\left(V_{I N}-V_{T D}\right) V_{\text {OUT-SAT-D }} \\
& I_{O U T-S A T-U}=k_{U}\left(V_{D D}-V_{I N}-V_{T U}\right) V_{O U T-S A T-U} \\
& \quad \sigma=q N \mu
\end{aligned}
$$

Example Values
$k_{D}=25 \mu \mathrm{~A} / \mathrm{V}^{2} \quad \mathrm{k}_{\mathrm{U}}=20 \mu \mathrm{~A} / \mathrm{V}^{2}$
$\mathrm{V}_{\mathrm{TD}}=1 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{TU}}=1 \mathrm{~V}$
$\mathbf{V}_{\text {out-Sat-d }}=1 \mathrm{~V} \quad \mathbf{V}_{\text {out-Sat-U }}=1 \mathbf{V}$
$R=\frac{L}{\sigma \cdot h \cdot w}=\left(\frac{1}{\sigma \cdot h}\right)\left(\frac{L}{W}\right)=R_{\text {SHEET }}\left(\frac{L}{W}\right)$

