

EECS 42 – Introduction to Electronics for Computer Science

Spring 2003Prof. A. R. NeureutherDept. EECS,510 Cory 642-4590UC BerkeleyOH M, Tu, W, (Th), F 11Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee42/

Midterm #1 March 5th, 2003

Closed Book, Closed Notes Write on the Exam paper

Print Your Name:_____

Sign Your Name:_____

Show your work so that the method as well as the answer can be graded for correctness and completeness. Correct answers alone are only worth 70% of full credit.

Problem	Possible	Score
Ι	28	
II	22	
III	25	
IV	25	
Total	100	

I (28 Points) Basic Circuit Analysis

$$\mathbf{V}_{\mathbf{A}\mathbf{A}} = \mathbf{2}\mathbf{V} \quad \mathbf{I}_{\mathbf{s}\mathbf{s}} = \mathbf{1} \ \mathbf{m}\mathbf{A}$$

$R_1 = 1k\Omega$ $R_2 = 2k\Omega$ $R_3 = 3k\Omega$

- a) (7 points) Find R_{TH}.
- b) (7 points) Find V_{OC} .

c) (7 points) Find the power delivered to the circuit by V_{AA} .

d) (7 points) Find the voltage on the current source I_{SS} in the direction shown on the diagram.

II (22 Points) Load Lines

circuit and the load.

b) (10 points) Adjust R_2 so that the solution passes through the point indicated on the device curve.

III (25 Points) Transient

The switch in the circuit closes at t = 0. Just before switching the capacitor is charged to 2V.

a) (18 points) Find the voltage on the capacitor $V_C(t)$ for t > 0.

b) (7 points) Find $dV_C(t)/dt$ just prior to the switch closing at t = 0.

IV (25 Points) Node Equations

a) (15 points) Assign labels to the nodes and write a complete set of node equations for determining the node voltages. (These equations should contain only the node voltages themselves, resistances, source strengths and the device current.)

b) (10 points) Use **one** of your node equations from above to find the voltage on I_{SS} when the voltage on the device is 2V. (Hint: Substitute the device voltage to break the equations apart to avoid excessive algebra).