Midterm #1 March 5th, 2003

Closed Book, Closed Notes
Write on the Exam paper

Print Your Name:____________________
Sign Your Name:____________________

Show your work so that the method as well as the answer can be graded for correctness and completeness. Correct answers alone are only worth 70% of full credit.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

I (28 Points) Basic Circuit Analysis

\[
\begin{align*}
&\text{Problem Possible Score} \\
&\quad I \quad 28 \\
&\quad II \quad 22 \\
&\quad III \quad 25 \\
&\quad IV \quad 25 \\
&\quad \text{Total} \quad 100
\end{align*}
\]
$V_{AA} = 2V$ $I_{ss} = 1 \text{ mA}$

$R_1 = 1k\Omega$ $R_2 = 2k\Omega$ $R_3 = 3k\Omega$

a) (7 points) Find R_{TH}.

b) (7 points) Find V_{OC}.

c) (7 points) Find the power delivered to the circuit by V_{AA}.

d) (7 points) Find the voltage on the current source I_{ss} in the direction shown on the diagram.
II (22 Points) Load Lines

A linear circuit is connected to a nonlinear load.

a) (12 points) Find the combination of current I and voltage V that satisfies both the circuit and the load.

b) (10 points) Adjust R_2 so that the solution passes through the point indicated on the device curve.
III (25 Points) Transient

The switch in the circuit closes at \(t = 0 \). Just before switching, the capacitor is charged to 2V.

a) (18 points) Find the voltage on the capacitor \(V_C(t) \) for \(t > 0 \).

b) (7 points) Find \(\frac{dV_C(t)}{dt} \) just prior to the switch closing at \(t = 0 \).

IV (25 Points) Node Equations
a) (15 points) Assign labels to the nodes and write a complete set of node equations for determining the node voltages. (These equations should contain only the node voltages themselves, resistances, source strengths and the device current.)

\[R_1 = 1 \text{k}\Omega \quad R_2 = 2 \text{k}\Omega \quad R_3 = 3 \text{k}\Omega \quad R_3 = 3 \text{k}\Omega \]
\[V_{AA} = 5 \text{ V} \quad I_{SS} = 1 \text{ mA} \]

b) (10 points) Use one of your node equations from above to find the voltage on \(I_{SS} \) when the voltage on the device is 2V. (Hint: Substitute the device voltage to break the equations apart to avoid excessive algebra).