EECS 42 - Introduction to Electronics for Computer Science
Spring 2003 Dept. EECS,

Prof. A. R. Neureuther 510 Cory 642-4590
OH M, Tu, W, (Th), F 11 UC Berkeley erkeley.EDU/~ee42/

Midterm \#1 March 5th, 2003
Closed Book, Closed Notes Write on the Exam paper

Print Your Name: \qquad Solution \qquad Sign Your Name: \qquad

Show your work so that the method as well as the answer can be graded for correctness and completeness. Correct answers alone are only worth 70% of full credit.

Problem	Possible	Score
I	28	
II	22	
III	25	
IV	25	
Total	100	

I (28 Points) Basic Circuit Analysis

$V_{\mathrm{AA}}=\mathbf{2 V} \quad \mathrm{I}_{\mathrm{sS}}=\mathbf{1} \mathbf{~ m A}$
$R_{1}=1 \mathrm{k} \Omega \quad R_{2}=2 \mathrm{k} \Omega \quad R_{3}=3 \mathrm{k} \Omega$
a) (7 points) Find R_{TH}.

$$
\begin{aligned}
& \text { Iss }=0=>\text { R1 and R2 disconnected } \\
& \text { RTH }=\text { R3 }
\end{aligned}
$$

b) (7 points) Find V_{OC}.

$$
\mathrm{VOC}=\mathrm{Iss} \mathrm{R} 3+\mathrm{Vaa}=1 \mathrm{~mA} 3 \mathrm{k} \Omega=2+3=5 \mathrm{~V}
$$

c) (7 points) Find the power delivered to the circuit by V_{AA}.

$$
\text { Power }=- \text { Iss Vaa }=-1 \mathrm{~mA} 2 \mathrm{~V}=-2 \mathrm{~mW}
$$

Note Vaa abosorbs power from the circuit.
d) (7 points) Find the voltage on the current source $\mathrm{I}_{\text {SS }}$ in the direction shown on the diagram.

```
Use a loop equation
Vss}=\textrm{IssR2}+\textrm{Vaa}+\mathrm{ Iss R 3 - Iss R1 = 2V + 2V + 3V -1V = 6V
```


II (22 Points) Load Lines

A linear circuit is connected to a nonlinear load.

a) (12 points) Find the combination of current I and voltage V that satisfies both the circuit and the load.

```
Voc = Iss R1 = 1 mA 4k\Omega = 4V
|Isc| = [R1/(R1 + R2)] Iss = [1k\Omega/(1 k\Omega + 2k\Omega)] 4 mA = 1.33 mA
Draw line from (4V, 0 mA) through (0V, 1.33 mA)
Intersection is about (1.5V, 0.8 mA)
```

b) (10 points) Adjust R_{2} so that the solution passes through the point indicated on the device curve.

Voc is unaffected by R 2 so still 4 V .
Draw a line from $(4 \mathrm{~V}, 0 \mathrm{~mA})$ through the given point which is approximately $(2 \mathrm{~V}, 1 \mathrm{~mA})$ and hit $\mathrm{V}=0$ axis at about 2 mA .
The new Rth $=4 \mathrm{~V} / 2 \mathrm{~mA}=2 \mathrm{k} \Omega$
This gives the new R2 2 Rth $-\mathrm{R} 1=2 \mathrm{k} \Omega-1 \mathrm{k} \Omega=1 \mathrm{k} \Omega$

III (25 Points) Transient

The switch in the circuit closes at $\mathrm{t}=0$. Just before switching the capacitor is charged to 2 V .
a) (18 points) Find the voltage on the capacitor $\mathrm{V}_{\mathrm{C}}(\mathrm{t})$ for $\mathrm{t}>0$.

$$
\begin{aligned}
& R_{1}=1 \mathrm{k} \Omega \quad R_{2}=2 \mathrm{k} \Omega \quad R_{3}=3 \mathrm{k} \Omega \\
& \mathbf{V}_{\mathrm{AA}}=5 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Given Vinitial }=\mathrm{Vc}(\mathrm{o})=2 \mathrm{~V} \\
& \text { Find Vfinal as no current in } \mathrm{C} \text { or } \mathrm{R} 3 \text { and } \mathrm{R} 2 \text { and } \mathrm{R} 1 \\
& \text { are voltage divider with voltage on } \mathrm{C} \text { backward so } \\
& \mathrm{Voc}(\text { infinity })=-[\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2) \mathrm{Vaa}=-[2 \mathrm{k} \Omega /(1 \mathrm{k} \Omega+ \\
& 2 \mathrm{k} \Omega)] 5 \mathrm{~V}=-3.33 \mathrm{~V} \\
& \mathrm{Capacitor} \mathrm{sees} \mathrm{Rth}=\mathrm{R} 1 \| \mathrm{R} 2+\mathrm{R} 3=3.67 \mathrm{k} \Omega \\
& \tau=1 \mathrm{pF} 3.67 \mathrm{k} \Omega=3.67 \mathrm{~ns} \\
& \mathrm{Vc}(\mathrm{t})=\mathrm{A}+\mathrm{Be} \mathrm{e}^{-t / \tau} \\
& \mathrm{A}=\mathrm{Vfinal}=-3.33 \mathrm{~V} \\
& \mathrm{~B}=2 \mathrm{~V}-\mathrm{A}=5.33 \mathrm{~V} \\
& \mathrm{Vc}(\mathrm{t})=-3.33+5.33 \mathrm{e}^{-\mathrm{t} 3.67 \mathrm{~ns}}
\end{aligned}
$$

b) (7 points) Find $d V_{C}(t) / d t$
just prior to the switch closing at $\mathrm{t}=0$.
$\mathrm{i}(\mathrm{t})=\mathrm{c} \mathrm{dV} / \mathrm{dt}=>\mathrm{d} / \mathrm{V} / \mathrm{dt}=\mathrm{i}(\mathrm{t}) / \mathrm{C}$ where current is into the + terminal
When $\mathrm{Vc}=2 \mathrm{~V}$ and the switch is open a current flows out of the
positive terminal of C through R 2 and R 3 back to the negative
terminal. This $\mathrm{i}\left(0^{-}\right)=-\mathrm{Vc} /(\mathrm{R} 2+\mathrm{R} 3)=-2 \mathrm{~V} /(2 \mathrm{k} \Omega+3 \mathrm{k} \Omega)=-0.4 \mathrm{~mA}$.
$\mathrm{DV} / \mathrm{dt}=-0.4 \mathrm{~mA} / 1 \mathrm{pF}=-0.4 \mathrm{~V} / \mathrm{ns}$

a) (15 points) Assign labels to the nodes and write a complete set of node equations for determining the node voltages. (These equations should contain only the node voltages themselves, resistances, source strengths and the device current.)

Assign bottom terminal to ground. Label top of R1 as node a. Label top of node R4 as node b.

$$
\begin{array}{lll}
\mathbf{R}_{1}=1 \mathrm{k} \Omega & \mathbf{R}_{2}=2 \mathrm{k} \Omega \quad R_{3}=3 \mathrm{k} \Omega & \mathrm{R}_{4}=4 \mathrm{k} \Omega \\
\mathrm{~V}_{\mathrm{AA}}=5 \mathrm{~V} & \mathrm{I}_{\mathrm{SS}}=1 \mathrm{~mA}
\end{array}
$$

$\frac{V_{A A}-V_{a}}{R_{1}}+I_{s s}+\frac{V_{b}-V_{a}}{R_{3}}=0$
$\frac{V_{a}-V_{b}}{R_{3}}-\frac{V_{b}}{R_{4}}-I_{\text {DEVICE }}=0$
b) (10 points) Use one of your node equations from above to find the voltage on I_{SS} when the voltage on the device is 2 V . (Hint: Substitute the device voltage to break the equations apart to avoid excessive algebra).

Use top equation and plug in $\mathrm{Vb}=2 \mathrm{~V}$.

$$
\begin{aligned}
& \frac{5 V-V_{a}}{1 k \Omega}+1 m A+\frac{2 V-V_{a}}{3 k \Omega}=0 \\
& V_{a}\left(\frac{1}{1 k \Omega}+\frac{1}{3 k \Omega}\right)=5 m A+1 m A+0.67 m A=6.67 \mathrm{~mA} \\
& \left.V_{a}=[6.67 m A) /(0.75 \mathrm{k} \Omega)\right]=5 \mathrm{~V} \\
& V s s=I s s \cdot R 2+V_{a}=1 m A \cdot 2 k \Omega+5 \mathrm{~V}=7 \mathrm{~V}
\end{aligned}
$$

