

EECS 42 – Introduction to Electronics for Computer Science

Spring 2003Prof. A. R. NeureutherDept. EECS,510 Cory 642-4590UC BerkeleyOH M, Tu, W, (Th), F 11Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee42/

Midterm #2 April 16th, 2003

Closed Book, Closed Notes Device Equations on Device Problem Write on the Exam paper

Print Your Name: ____Solution_____

Sign Your Name:_____

Show your work so that the method as well as the answer can be graded for correctness and completeness. Correct answers alone are only worth 70% of full credit.

Problem	Possible	Score
Ι	30	
II	35	
III	35	
Total	100	

I (30 Points) Logic and Timing Diagrams

a) (12 points) Complete the truth table.

Α	B	Χ	Y
0	0		
1	0		
0	1		
1	1		

A	B	X	Y
0	0	1	0
1	0	0	0
0	1	0	1
1	1	0	0

b) (18 points) Complete the timing diagram for all eight gate delays.

a) (15 points) Find V_{OUT} in terms of V_S , the resistors and the dependent source strength β .

$$i_{b} = V_{OUT} / R_{1}$$

$$\beta i_{b} = \beta V_{OUT} / R_{1}$$

$$V_{OUT} \left(\frac{1}{R_{1}} + \beta \frac{1}{R_{1}} + \frac{1}{R_{2}}\right) + \frac{\left(V_{OUT} - V_{S}\right)}{R_{S}} = 0$$

$$V_{OUT} = V_{S} \frac{\frac{1}{R_{S}}}{\left(\frac{1}{R_{1}} + \beta \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{S}}\right)}$$

b) (12 points) Find the resistance seen looking to the right of AA' in terms of the resistors and the dependent source strength β .

Apply v_{TEST} to the input then find i_{TEST}

$$i_{TEST} = \frac{V_{TEST}}{R_1} + \beta \frac{V_{TEST}}{R_1} + \frac{V_{TEST}}{R_2} = V_{TEST} \left(\frac{\beta + 1}{R_1} + \frac{1}{R_2} \right)$$
$$\frac{V_{TEST}}{I_{TEST}} = \frac{1}{\left(\frac{\beta + 1}{R_1} + \frac{1}{R_2} \right)} = \left(\frac{R_1}{\beta + 1} \right) || R_2$$

c) (8 points) Does increasing β raise or lower the resistance in part b)? Give a brief intuitive explanation of how this occurs.

Raising β reduces the resistance as whatever current that flows into R1 is always matched by a β times larger current through the dependent source. This same current is exactly the same current that would flow through resistor R1 if it were (β +1) times smaller. (This reduction is diluted somewhat by R2 being in parallel.)

III (35 Points) Logic Circuit with a EE42 Device

	Values for this Exam	
$I_{OUT-SAT-D} = \kappa_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$	$k_{\rm D} = 40 \ \mu {\rm A/V2}$	$kU = 30 \ \mu A/V^2$
	$V_{TD} = 2V$	VTU = 1.5V
	VOUT-SAT-D = 0.5V	VOUT-SAT-U= 1.5V

$$I_{OUT-SAT-U} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{OUT-SAT-U}$$

When in circuit attached to VDD.

b) (11 points) Now consider the EE 42 device alone with the parameter values given. If V_{IN} is limited to a range of 0 to 5V and V_{OUT} is limited to a range of 0 to 5V, what will be the maximum current?

Highest is when $V_{IN} = 5V$ and $V_{OUT} = 5V$

$$I = (40\,\mu A / V^2)(5V - 2V)(0.5V) = 60\,\mu A$$

c) (12 points) Now consider the EE 42 device and circuit connected together. Find V_{OUT} when $V_{IN} = 3V$. You may use either a graphical or an algebraic method.

