EECS 42 - Introduction to Electronics for Computer Science
Spring 2003 Dept. EECS, UC Berkeley

Prof. A. R. Neureuther 510 Cory 642-4590
OH M, Tu, W, (Th), F 11
Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee42/

Midterm \#2 April 16th, 2003
Closed Book, Closed Notes
Device Equations on Device Problem Write on the Exam paper
\qquad Solution \qquad Sign Your Name: \qquad

Show your work so that the method as well as the answer can be graded for correctness and completeness. Correct answers alone are only worth 70\% of full credit.

Problem	Possible	Score
I	$\mathbf{3 0}$	
II	$\mathbf{3 5}$	
III	$\mathbf{3 5}$	
Total	$\mathbf{1 0 0}$	

a) (12 points) Complete the truth table.

\mathbf{A}	\mathbf{B}	\mathbf{X}	\mathbf{Y}
$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{0}$		
$\mathbf{0}$	$\mathbf{1}$		
$\mathbf{1}$	$\mathbf{1}$		

\mathbf{A}	\mathbf{B}	\mathbf{X}	\mathbf{Y}
$\mathbf{0}$	$\mathbf{0}$	1	0
1	0	0	0
0	1	0	1
1	1	0	0

b) (18 points) Complete the timing diagram for all eight gate delays.

Time (gate delays)

a) (15 points) Find $V_{\text {OUT }}$ in terms of V_{S}, the resistors and the dependent source strength β.
$i_{b}=V_{\text {OUT }} / R_{1}$
$\beta i_{b}=\beta V_{\text {OUT }} / R_{1}$
$V_{\text {OUT }}\left(\frac{1}{R_{1}}+\beta \frac{1}{R_{1}}+\frac{1}{R_{2}}\right)+\frac{\left(V_{\text {OUT }}-V_{S}\right)}{R_{S}}=0$
$V_{\text {OUT }}=V_{S} \frac{\frac{1}{R_{S}}}{\left(\frac{1}{R_{1}}+\beta \frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{S}}\right)}$
b) (12 points) Find the resistance seen looking to the right of AA' in terms of the resistors and the dependent source strength β.

Apply $\mathrm{v}_{\text {TEST }}$ to the input then find $\mathrm{i}_{\text {TEST }}$
$i_{\text {TEST }}=\frac{V_{\text {TEST }}}{R_{1}}+\beta \frac{V_{\text {TEST }}}{R_{1}}+\frac{V_{\text {TEST }}}{R_{2}}=V_{\text {TEST }}\left(\frac{\beta+1}{R_{1}}+\frac{1}{R_{2}}\right)$
$\frac{V_{\text {TEST }}}{I_{\text {TEST }}}=\frac{1}{\left(\frac{\beta+1}{R_{1}}+\frac{1}{R_{2}}\right)}=\left(\frac{R_{1}}{\beta+1}\right) \| R_{2}$
c) (8 points) Does increasing β raise or lower the resistance in part b)? Give a brief intuitive explanation of how this occurs.

Raising β reduces the resistance as whatever current that flows into R1 is always matched by a β times larger current through the dependent source. This same current is exactly the same current that would flow through resistor R 1 if it were $(\beta+1)$ times smaller. (This reduction is diluted somewhat by R 2 being in parallel.)

III (35 Points) Logic Circuit with a EE42 Device

$$
I_{O U T-S A T-D}=k_{D}\left(V_{I N}-V_{T D}\right) V_{O U T-S A T-D}
$$

Values for this Exam

$$
\begin{array}{ll}
\mathrm{kD}=40 \mu \mathrm{~A} / \mathrm{V}^{2} & \mathrm{kU}=30 \mu \mathrm{~A} / \mathrm{V}^{2} \\
\text { VTD }=2 \mathrm{~V} & \mathrm{VTU}=1.5 \mathrm{~V} \\
\text { VOUT-SAT-D }=0.5 \mathrm{~V} & \text { VOUT-SAT-U }=\mathbf{1 . 5 V}
\end{array}
$$

$$
\begin{aligned}
& I_{O U T-S A T-U}=k_{U}\left(V_{D D}-V_{I N}-V_{T U}\right) V_{O U T-S A T-U} \\
& \text { When in circuit attached to VDD. }
\end{aligned}
$$

a) (12 points) Remove the EE42 pull-down device from this circuit and consider the remaining circuit. Find the open circuit voltage and short circuit current that is seen looking out from the position of the pulldown EE42 device into the remaining circuit.
$V_{O C}=2 V+(5 V-2 V) \frac{R_{2}}{R_{1}+R_{2}}=2 V+3 V \frac{50 k \Omega}{100 k \Omega+50 k \Omega}=3 V$

$I_{S_{-} \text {Donward }}=\frac{5 \mathrm{~V}}{100 k \Omega}+\frac{2 \mathrm{~V}}{50 \mathrm{k} \Omega}=50 \mu \mathrm{~A}+40 \mu \mathrm{~A}=90 \mu \mathrm{~A}$
b) (11 points) Now consider the EE 42 device alone with the parameter values given. If $\mathrm{V}_{\text {IN }}$ is limited to a range of 0 to 5 V and $\mathrm{V}_{\text {OUT }}$ is limited to a range of 0 to 5 V , what will be the maximum current?

Highest is when $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ and $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$

$$
I=\left(40 \mu A / V^{2}\right)(5 V-2 V)(0.5 V)=60 \mu A
$$

c) (12 points) Now consider the EE 42 device and circuit connected together. Find Vout when $\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$. You may use either a graphical or an algebraic method.

For $\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$, ISAT $=40(3 \mathrm{~V}-2 \mathrm{~V})(0.5 \mathrm{~V})=20 \mu \mathrm{~A}$ KCL at the putput node gives

$$
\begin{aligned}
& 20 \mu A=\frac{5 V-V_{\text {OUT }}}{100 k \Omega}+\frac{2 V-V_{\text {OUT }}}{50 k \Omega} \\
& V_{\text {OUT }}=70 \mu A \frac{50 \mathrm{k} \Omega \cdot 100 \mathrm{k} \Omega}{50 \mathrm{k} \Omega+100 \mathrm{k} \Omega}=2.34 \mathrm{~V}
\end{aligned}
$$

