EECS 42 – Introduction to Electronics for Computer Science

Spring 2003, Dept. EECS, UC Berkeley

Prof. A. R. Neureuther 510 Cory 642-4590

Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee42/

Quiz #1 February 26, 2003

Show your work so that the method can be graded for correctness and completeness and all of the points do not depend on just the final numerical value.

I (20 Points) Basic Circuit Analysis

a) For the circuit shown find V_b.

$$\frac{V_1 - V_{OUT}}{R_1} + I_2 - \frac{V_{OUT}}{R_2} = 0$$

$$(2mA + 1mA) = V_{OUT} / (R_1 \parallel R_2)$$

$$V_{OUT} = 3mA \cdot (2/3)k\Omega = 2V$$

b) Find the Thevenin resistance seen looking into the output terminals.

$$R_{TH} = R_1 || R_2 = (2/3)k\Omega$$

$V_{a} = 2V - V_{a} V_{b}$ $V_{1} = 2V - V_{0} V_{b}$ $V_{1} = 1 \text{ k}\Omega$ $V_{2} = 2 \text{ k}\Omega$ $V_{1} = 1 \text{ mA}$ $V_{0} = 1 \text{ mA}$

Grading:

8 pts KCL (-3 first error, -3 second error)

4 pts solution (2V)

8 pts V_{TH} (2 pts if one of two resistors)

II (20 Points) Transient Analysis

The current source in the circuit to the right is is turned from 0 to 1 mA at t=0. Find an equation that describes $V_C(t)$.

e right is Find an
$$R_1 = 4 \text{ k}\Omega$$

$$R_2 = 2 \text{ k}\Omega$$

$$I_{SS} = 1 \text{mA}$$

$$+ V_C$$

$$C = 1 \text{pF}$$

 $V_{INITIAL} = 0$ as R2 would discharge C.

$$V_{FINAL} = 1 \text{mA } x 2k\Omega = 2V$$

$$R_{TH} = R2 = 2k\Omega$$

$$\tau = 2k\Omega \times 1pF = 2 \text{ ns}$$

$$V_C(t) = A + Be^{-t/\tau} = 2V - 2Ve^{-t/2ns}$$

Grading:

6 V_{FINAL} or Equation correct

6 V_{INITIAL} or Equation Correct

8 time constant correct (2 if R other than R1)