EE 42

Midterm \#1 Review Solutions

Problem 1:

To find $R_{T H}\left(R_{N}\right)$, we can turn off the independent sources:

Now, the 18 W resistor is in parallel with a wire. The resistor must have 0 V , or KVL would be violated. So we can ignore this resistor, since it has 0 V and therefore 0 A .

Now, the $5 \Omega, 3 \Omega$, and 8Ω resistors are in series since they have the same current: no current can go through the hole where the current source used to be. They combine into a $5 \Omega+3 \Omega+8 \Omega=16 \Omega$ resistor.

So, $R_{T H}=R_{N}=16 \Omega$.

To find V_{TH}, we find the voltage drop from a to b with the terminals left open.
With the terminals left open, the $5 \Omega, 3 \Omega$, and 8Ω resistors, and the current source, all share the same current. There is nowhere for the current to escape within that branch. The current source dictates that the current is 4 A as shown:

Problem 2:

To find power generated, we need to find the current going from - to + over the device voltage and multiply these values together.

By KVL, counter-clockwise in the right hand loop,

$$
(4 \mathrm{~A})(5 \Omega)+12 \mathrm{~V}+(4 \mathrm{~A})(3 \Omega)+(4 \mathrm{~A})(8 \Omega)-\mathrm{V}_{4 \mathrm{~A}}=0 \quad \mathrm{~V}_{4 \mathrm{~A}}=76 \mathrm{~V}
$$

By KVL, clockwise in the left hand loop,

$$
\left(\mathrm{I}_{20 \mathrm{~V}}\right)(7 \Omega)+12 \mathrm{~V}+\left(\mathrm{I}_{20 \mathrm{~V}}\right)(11 \Omega)-20 \mathrm{~V}=0 \quad \mathrm{I}_{20 \mathrm{~V}}=4 / 9 \mathrm{~A}
$$

By KCL at the top-middle node,

$$
I_{20 V}+I_{12 V}+4 A=0
$$

$$
\mathrm{I}_{12 \mathrm{~V}}=-40 / 9 \mathrm{~A}
$$

Now, we have the quantities we need to calculate power generated:
4 A source: $\quad P=(4 \mathrm{~A})(76 \mathrm{~V})=304 \mathrm{~W}$
20 V source: $\quad P=(4 / 9 \mathrm{~A})(20 \mathrm{~V})=80 / 9 \mathrm{~W}$
12 V source: $\mathrm{P}=(-40 / 9 \mathrm{~A})(12 \mathrm{~V})=-160 / 3 \mathrm{~W}$

Problem 3:

If we find R_{TH} by replacing the voltage source with a wire, we end up a with 8Ω in parallel with a wire. Now the resistor must have 0 V and therefore no current, so it can be removed. This leaves only the wire from a to b.
$\mathrm{R}_{\mathrm{TH}}=0 \Omega$ (wire)
This means the Thevenin equivalent is just the 12 V source, with no resistor.

The I-V graph for this circuit is a vertical line. There is no y intercept, so I_{N}, and the Norton equivalent circuit, do not exist for this example.

If we find R_{TH} by replacing the curent source with air, we end up with 8Ω a in series with air. Now the resistor must have zero current, so it can be removed. This leaves only air from a to b.

$\mathrm{R}_{\mathrm{N}}=\infty$ (air)
This means the Thevenin equivalent is just the 4 A source, with no resistor in parallel.

The I-V graph for this circuit is a horizontal line. There is no x intercept, so V_{TH}, and the Thevenin equivalent circuit, do not exist for this example.

Problem 4:

We have no independent sources in this circuit. This means that $\mathrm{V}_{\mathrm{TH}}=0 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{N}}=0 \mathrm{~A}$.
So, the circuit is simply a resistor. To find the resistance, R_{TH}, we apply a test voltage (any voltage we want; 10 V for example) and measure the current going through the circuit:

By KVL on the right-hand loop, we see that the 4Ω resistor has 10 V as shown.

KVL on the center loop counterclockwise:
$-10 V--25 I_{X}+(10 \Omega) I_{X}=0$
$\mathrm{I}_{\mathrm{x}}=2 / 7 \mathrm{~A}$

By KCL on the surface shown,

$$
\begin{aligned}
& 2 \mathrm{I}_{\mathrm{X}}+\mathrm{I}_{\mathrm{X}}+(10 \mathrm{~V} / 4 \Omega)-\mathrm{I}_{\text {TEST }}=0 \\
& \mathrm{I}_{\text {TEST }}=37 / 14 \mathrm{~A} \\
& \mathrm{R}_{\text {TH }}=\mathrm{V}_{\text {TEST }} / \mathrm{I}_{\text {TEST }}=10 \mathrm{~V} /(37 / 14 \mathrm{~A}) \\
& \mathrm{R}_{\text {TH }}=140 / 37 \Omega
\end{aligned}
$$

Problem 5:

By KVL around the input loop shown,

$$
V_{R 1}+V_{2}-V_{1}=0 \quad \text { so } \quad V_{R 1}=V_{1}-V_{2}
$$

Problem 6:

Since this is an inverting amplifier, we know immediately that
$V_{\text {OUT }}=-(2 \mathrm{k} \Omega / 4 \mathrm{k} \Omega) 10 \mathrm{~V}$
$V_{\text {OUT }}=-5 \mathrm{~V}$
Also, note that the right side of the $2 \mathrm{k} \Omega$ resistor is at voltage $\mathrm{V}_{\text {OUT }}$, and the left side is at ground. (Trace from the left side to ground; you only go over the op-amp inputs, a drop of 0 V).

KCL equation at the $\mathrm{V}_{\text {OUT }}$ node: $\mathrm{V}_{\text {OUT }} / 8 \mathrm{k} \Omega+\mathrm{V}_{\text {OUT }} / 2 \mathrm{k} \Omega-\mathrm{I}_{\text {OUT }}=0 \quad \mathrm{I}_{\text {OUT }}=-25 / 8 \mathrm{~A}$

Problem 7:

The input is 5 V at $\mathrm{t}=0$, and decays exponentially to 0 V . The threshold voltage is 2 V , so the output will be at the high rail until the input gets down to around 2 V , then the output will quickly transition down to the low rail.

The output will be at a rail unless the output voltage given by the linear region formula is between the rails. So the amplifier will be in the linear region when:
$\mathrm{V}_{\text {OUT }}(\mathrm{t})=\mathrm{A}\left(\mathrm{V}_{+}-\mathrm{V}_{-}\right)=1000\left(\mathrm{~V}_{\operatorname{IN}}(\mathrm{t})-2 \mathrm{~V}\right) \quad$ is between 0 V and 5 V
The linear region is entered when this quantity is exactly 5 V :
$5 \mathrm{~V}=1000\left(5 \mathrm{e}^{-4000 t} \mathrm{~V}-2 \mathrm{~V}\right)$
$t=-1 / 4000 \ln (2.005 / 5)$
$t=228.45 \mu \mathrm{~s}$
The linear region is over when this quantity is exactly 0 V :
$0 V=1000\left(5 e^{-4000 t} V-2 V\right)$
$t=-1 / 4000 \ln (2 / 5)$
$\mathrm{t}=229.07 \mu \mathrm{~s}$
The comparator is in the linear region for 620 ns.

