Today we will:
- Look at why our NMOS and PMOS inverters might not be the best inverter designs
- Introduce the CMOS inverter
- Analyze how the CMOS inverter works

NMOS Inverter

When V_{IN} changes to logic 0, the transistor gets cutoff. I_D goes to 0.
Resistor voltage goes to zero. V_{OUT} “pulled up” to 5 V.

When V_{IN} is logic 1, V_{OUT} is logic 0.
Constant nonzero current flows through transistor.
Power is used even though no new computation is being performed.
PMOS Inverter

When V_{IN} is logic 0, V_{OUT} is logic 1.

Constant nonzero current flows through transistor.

Power is used even though no new computation is being performed.

When V_{IN} changes to logic 1, transistor gets cutoff. I_D goes to 0. Resistor voltage goes to zero. V_{OUT} “pulled down” to 0 V.

Analysis of CMOS Inverter

- We can follow the same procedure to solve for currents and voltages in the CMOS inverter as we did for the single NMOS and PMOS circuits.
- Remember, now we have two transistors so we write two I-V relationships and have twice the number of variables.
- We can roughly analyze the CMOS inverter graphically.

NMOS is “pull-down device”
PMOS is “pull-up device”
Each shuts off when not pulling
NMOS Inverter

Saturation mode

$V_{GS} = 3\, \text{V}$

$V_{GS} = 1\, \text{V}$

Linear I_D vs V_{DS} given by surrounding circuit

Linear KVL and KCL Equations

$V_{GS(n)} = V_{IN}$

$V_{GS(p)} = V_{IN} - V_{DD}$

$V_{GS(p)} = V_{DS(n)} - V_{DD}$

$I_{D(p)} = -I_{D(n)}$

$V_{DS(n)} = V_{OUT}$

$V_{DS(p)} = V_{OUT} - V_{DD}$

Use these equations to write both I-V equations in terms of $V_{DS(n)}$ and $I_{D(n)}$.
CMOS Analysis

As V_{IN} goes up, $V_{GS(n)}$ gets bigger and $V_{GS(p)}$ gets less negative.

$V_{IN} =$
$V_{GS(n)} =$ 0.9 V

As V_{IN} goes up, $V_{GS(n)}$ gets bigger and $V_{GS(p)}$ gets less negative.

$V_{IN} =$
$V_{GS(n)} =$ 1.5 V
CMOS Analysis

As \(V_{IN} \) goes up, \(V_{GS(n)} \) gets bigger and \(V_{GS(p)} \) gets less negative.

NMOS I-V curve

PMOS I-V curve

(written in terms of NMOS variables)

\[V_{IN} = \]
\[V_{GS(n)} = \]
\[2.0 \text{ V} \]

\[V_{DS(n)} \]

\[V_{DD} \]
CMOS Analysis

As V_{IN} goes up, $V_{GS(n)}$ gets bigger and $V_{GS(p)}$ gets less negative.

NMOS I-V curve

PMOS I-V curve (written in terms of NMOS variables)

$V_{IN} = 3.0 \text{ V}$

$V_{GS(n)} = 3.0 \text{ V}$

$V_{DS(n)}$

V_{DD}

CMOS Analysis

As V_{IN} goes up, $V_{GS(n)}$ gets bigger and $V_{GS(p)}$ gets less negative.

NMOS I-V curve

PMOS I-V curve (written in terms of NMOS variables)

$V_{IN} = 3.5 \text{ V}$

$V_{GS(n)} = 3.5 \text{ V}$

$V_{DS(n)}$

V_{DD}
CMOS Analysis

As V_{IN} goes up, $V_{GS(n)}$ gets bigger and $V_{GS(p)}$ gets less negative.

PMOS I-V curve (written in terms of NMOS variables)

$V_{IN} = V_{GS(n)} = 4.1 \text{ V}$

CMOS Inverter V_{OUT} vs. V_{IN}

curve very steep here; only in “C” for small interval of V_{IN}
CMOS Inverter I_D

Important Points

- No I_D current flow in Regions A and E if **nothing** attached to output; current flows only during logic transition.
- If another inverter (or other CMOS logic) attached to output, transistor gate terminals of attached stage do not permit current; current still flows only during logic transition.