N.4	
Announcements	
Prof. Ross's office hours (in 477 Cory):	
□ Tu Th 1:30 PM – 2:30 PM	
□ Tu Th after class – 6:30 PM	
additional appointments welcome!	
 GSI Ashwin Ganesan's office hours (in 493 Cory): 	
□ M 4 PM – 5 PM	
□ F 10 AM – 11 AM	
 GSI Joe Makin's office hours (in 493 Cory): 	
To be announced	
 Problems with Tuesday 11-12 discussion, will be held 	in 521
Cory next week (1/30/04) only; then likely to be resche	eduled
1/22/2004 EE 42 Lecture 2	

Cast of Characters

- Fundamental quantities
 - □ Charge
 - □ Current
 - □ Voltage
 - □ Power
- Fundamental concern
 - □ Current-Voltage Relationship
- Fundamental elements
 - □ Resistor
 - □ Voltage Source
 - □ Current Source

1/22/2004

Charge

- You are already familiar with the idea of charge from chemistry or physics.
- We say a proton has a positive charge, and an electron has a negative charge.
- Charge is measured in units called Coulombs, abbreviated C.

1 C is a whole lot 1 proton = $1.6 \times 10^{-19} C$ of protons! $1 = 1.6 \times 10^{-19} C$ 6.25 x 10¹⁸ protons in 1 C. EE 42 Lecture 2

Electric Field

1/22/2004

- We know that opposite charges attract each other, and like charges repel.
- The presence of a charged particle creates an electric field. Other phenomena also create an electric field.
- The electric field is a lot like gravity. It can point in different directions and have different strength

Voltage

- It takes energy to move a proton against the direction of an electric field (just like it takes energy to lift an object off the ground, against gravity).
- Suppose it takes (positive) energy to move a proton from point a to point b. Then we say point b is at a higher electric potential than point a.
- The difference in electric potential between two points is called voltage. Voltage, measured in Volts (V) indicates how much energy it takes to move a charge from point to point.

1/22/2004

EE 42 Lecture 2

Voltage Conventions

- Voltage is always measured between two points (just like distance). We need to specify the "start" and "finish".
- We could write saying that **b** is 5 V higher than **a**.

Or, we could write

higher than b.

saying that a is -5 V

When we put down a + and a – to specify a voltage, it is simply a reference frame. We are not making a statement about which point **actually has** the higher potential, since the voltage in between can be negative!

1/22/2004

Voltage Conventions: Ground

- Many times, a common point will be used as the starting (-) point for several voltage measurements. This common point is called <u>common</u> or <u>ground</u>.
- We may define a voltage at point "a" with respect to ground. This refers to the voltage with + reference at "a" and – reference at ground (the voltage drop from "a" to ground).
- Voltages with respect to ground are often denoted using a single subscript:
- Notice the symbol for ground.
 Also seen is

°z

1/22/2004

EE 42 Lecture 2

Current: Moving Charge

- An electric field (or applied energy) can cause charge to move.
- The amount of charge per time unit moving past a point is called current.
- Current is measured in Coulombs per second, which are called Amperes (abbreviated A and called Amps for short).
- Mathematically speaking,

$$=\frac{dq}{dt}$$

where i is current in A, q is charge in C, and t is time in s

 Even though it is usually electrons that do the moving, current is defined as the flow of positive charge.

1/22/2004

Current Reference Direction

Current also needs a reference frame. To define a current, draw an arrow:

- This says "the current moving through the device from left to right is 5 A".
- We could also say, "the current moving through the device from right to left is -5 A".
- Drawing an arrow does not make a statement about the direction the current is actually going. It is just a reference frame. You can draw arrows however you want when you need to solve for currents.

1/22/2004

EE 42 Lecture 2

Resistance

- Current is due the ability of electrons to break away from atoms and move around.
- In some materials, like metals, where there are few valence electrons, little energy is needed to break bonds and move an electron.
- In other materials, a strong electric field (voltage) must be applied to break the bonds. These materials are said to have a higher resistance.
- Resistance, measured in Ohms (Ω), indicates how much voltage is necessary to create a certain amount of current.

Power

- Power is the amount of energy absorbed or generated per unit time. It is the time derivative of energy, and it is measured in Watts (W).
- The power absorbed (or generated) by a device is equal to the product of the current through the device and the voltage over the device:
 - p = v i where p is power in W, v is voltage in V and i is current in A.
- Sometimes this equation gives you the power absorbed by the device, and sometimes it provides the power generated by the device.

1/22/2004

EE 42 Lecture 2

Power: Sign Convention

- Whether "p = v i" provides absorbed power or generated power depends on the relationship between the current and voltage directions.
- If the current i is referenced to flow from the "+" terminal of v to the "-" terminal of v, then "p = v i" provides the power absorbed.
- When the opposite is true, "p = v i" provides the power generated.

Power absorbed by device = (V_{device}) (i₁) Power generated by device = (V_{device}) (i₂)

1/22/2004

Current-Voltage Relationship

- In this course, we deal with circuits that perform computations, where the numbers are voltages.
- Voltages appear at the input, and create current in the devices, which in turn changes the output voltage—and computation has taken place.
- The relationship between current and voltage in a device is fundamental. Circuit elements are characterized by their current-voltage relationships. It is these relationships that allow us to design and analyze circuits.
- We will now present current-voltage relationships (called i-v relationships for short) for basic circuit elements.

Basic Circuit Elements

Resistor □ Current is proportional to voltage (linear) Ideal Voltage Source □ Voltage is a given quantity, current is unknown Wire (Short Circuit) □ Voltage is zero, current is unknown Ideal Current Source □ Current is a given quantity, voltage is unknown Air (Open Circuit) □ Current is zero, voltage is unknown FE 42 Lecture 2 1/22/2004

Resistor

The resistor has a currentvoltage relationship called Ohm's law:

v = i R

where R is the resistance in Ω , i is the current in A, and v is the voltage in V, with reference directions as pictured.

- If R is given, once you know i, it is easy to find v and vice-versa.
- Since R is never negative, a resistor always absorbs power...

1/22/2004

No.		
Ideal Volta	ge Source	
 The ideal voltation the voltage betain the voltage betain the voltage betain the constant (Display="block">	age source explicitly defines tween its terminals. DC) voltage source: $Vs = 5 V$ ng voltage source: $Vs = 10 \sin(t) V$ batteries, wall outlet, function generator, age source does not provide any information ent flowing through it. rough the voltage source is defined by the re- o which the source is attached. Current cannot by the value of the voltage. e that the current is zero! EE 42 Lecture 2	est not
Do not assume 1/22/2004	e that the current is zero! EE 42 Lecture 2	
N		
Wire		
Wire has a	a very small resistance.	
For simplic following w piece of wi current goi Wire is a	city, we will idealize wire in the vay: the potential at all points on a ire is the same, regardless of the ing through it. 0 V voltage source 0 O resistor	
□ Wire is a ■ This idealiz	0Ω resistor zation (and others) can lead to	
contradictio	ons on paper—and smoke in lab.	
1/22/2004	EE 42 Lecture 2	

Ideal Current Source

- The ideal current source sets the value of the current running through it.
 □ Constant (DC) current source: I_s = 2 A
 □ Time-Varying current source: I_s = -3 sin(t) A
 □ Examples: few in real life!
- The ideal current source has known current, but unknown voltage.
- The voltage across the voltage source is defined by the rest of the circuit to which the source is attached.
- Voltage cannot be determined by the value of the current.
- Do not assume that the voltage is zero!

1/22/2004

EE 42 Lecture 2

Air

- Many of us at one time, after walking on a carpet in winter, have touched a piece of metal and seen a blue arc of light.
- That arc is current going through the air. So is a bolt of lightning during a thunderstorm.
- However, these events are unusual. Air is usually a good insulator and does not allow current to flow.
- For simplicity, we will idealize air in the following way: current never flows through air (or a hole in a circuit), regardless of the potential difference (voltage) present.

□ Air is a 0 A current source

- □ Air is a very very big (infinite) resistor
- There can be nonzero voltage over air or a hole in a circuit!

1/22/2004