Announcements

- Prof. Ross's office hours (in 477 Cory):
- Tu Th 1:30 PM - 2:30 PM
- Tu Th after class - 6:30 PM
- additional appointments welcome!
- GSI Ashwin Ganesan's office hours (in 493 Cory):
\square M 4 PM - 5 PM
\square F 10 AM - 11 AM
- GSI Joe Makin's office hours (in 493 Cory):
\square To be announced
- Problems with Tuesday 11-12 discussion, will be held in 521 Cory next week ($1 / 30 / 04$) only; then likely to be rescheduled

Cast of Characters

- Fundamental quantities
- Charge
- Current
\square Voltage
- Power
- Fundamental concern
- Current-Voltage Relationship
- Fundamental elements
- Resistor
\square Voltage Source
- Current Source

Charge

- You are already familiar with the idea of charge from chemistry or physics.
- We say a proton has a positive charge, and an electron has a negative charge.
- Charge is measured in units called Coulombs, abbreviated C .

1 proton $=1.6 \times 10^{-19} \mathrm{C}$	
1 electron $=-1.6 \times 10^{-19} \mathrm{C}$	1 C is a whole lot of protons! 6.25×10^{18} protons in 1 C.

Electric Field

- We know that opposite charges attract each other, and like charges repel.
- The presence of a charged particle creates an electric field. Other phenomena also create an electric field.
- The electric field is a lot like gravity. It can point in different directions and have different strength

Voltage

- It takes energy to move a proton against the direction of an electric field (just like it takes energy to lift an object off the ground, against gravity).
- Suppose it takes (positive) energy to move a proton from point \mathbf{a} to point \mathbf{b}. Then we say point \mathbf{b} is at a higher electric potential than point a.
- The difference in electric potential between two points is called voltage. Voltage, measured in Volts (V) indicates how much energy it takes to move a charge from point to point.

Voltage Conventions

- Voltage is always measured between two points (just like distance). We need to specify the "start" and "finish".
- We could write saying that \mathbf{b} is 5 V higher than \mathbf{a}.
- Or, we could write saying that \mathbf{a} is -5 V

- When we put down a + and a - to specify a voltage, it is simply a reference frame. We are not making a statement about which point actually has the higher potential, since the voltage in between can be negative!

Voltage Conventions: Notation

- We can use subscript convention to define a voltage between two labeled points:

" V_{ab} " means the potential at "a" minus the potential at "b" (that is, the potential drop from "a" to "b").
- Remember, this is not saying that the potential at "a" is higher than the potential at " b ". The difference could be negative.
- We can make up voltages with any names we wish, as long as we provide a reference frame (+ and -).
- Here, $\mathrm{V}_{\text {Ross }}$ is the potential rise from left to right (or, the potential drop from right to left, or the right potential minus the left).

1/22/2004
EE 42 Lecture 2

Examples \quad The flat end of the battery is at lower potential than the "bump" end.

What is $V_{A D}$?
Find V_{1} and V_{x}.

Voltage Conventions: Ground

- Many times, a common point will be used as the starting (-) point for several voltage measurements. This common point is called common or ground.
- We may define a voltage at point "a" with respect to ground. This refers to the voltage with + reference at "a" and reference at ground (the voltage drop from "a" to ground).
- Voltages with respect to ground are often denoted using a single subscript:
- Notice the symbol for ground.

Also seen is

1/22/2004

Current: Moving Charge

- An electric field (or applied energy) can cause charge to move.
- The amount of charge per time unit moving past a point is called current.
- Current is measured in Coulombs per second, which are called Amperes (abbreviated A and called Amps for short).
- Mathematically speaking,

$$
\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}} \quad \begin{aligned}
& \text { where } \mathrm{i} \text { is current in } \mathrm{A}, \mathrm{q} \text { is } \\
& \text { charge in } \mathrm{C} \text {, and } \mathrm{t} \text { is time in } \mathrm{s}
\end{aligned}
$$

- Even though it is usually electrons that do the moving, current is defined as the flow of positive charge.

Current Reference Direction

- Current also needs a reference frame. To define a current, draw an arrow:

- This says "the current moving through the device from left to right is $5 \mathrm{~A}^{\prime \prime}$.
- We could also say, "the current moving through the device from right to left is $-5 \mathrm{~A}^{\prime \prime}$.
- Drawing an arrow does not make a statement about the direction the current is actually going. It is just a reference frame. You can draw arrows however you want when you need to solve for currents.

Resistance

- Current is due the ability of electrons to break away from atoms and move around.
- In some materials, like metals, where there are few valence electrons, little energy is needed to break bonds and move an electron.
- In other materials, a strong electric field (voltage) must be applied to break the bonds. These materials are said to have a higher resistance.
- Resistance, measured in Ohms (Ω), indicates how much voltage is necessary to create a certain amount of current.

Power

- Power is the amount of energy absorbed or generated per unit time. It is the time derivative of energy, and it is measured in Watts (W).
- The power absorbed (or generated) by a device is equal to the product of the current through the device and the voltage over the device:
$p=v i \quad$ where p is power in W, v is voltage in V and i is current in A.
- Sometimes this equation gives you the power absorbed by the device, and sometimes it provides the power generated by the device.

Power: Sign Convention

- Whether "p = vi" provides absorbed power or generated power depends on the relationship between the current and voltage directions.
- If the current i is referenced to flow from the " + " terminal of v to the "-" terminal of v, then " $p=v i$ " provides the power absorbed.
- When the opposite is true, " $p=v i "$ provides the power generated.


```
Power absorbed by
device = (V (device })(\mp@subsup{\textrm{i}}{1}{}
Power generated by
device = (V \ device )
```


Power Calculations

Find the power absorbed by each element.

Element $\mathbf{\square}$:
Element *
Element \mathbf{x} :
Element $\boldsymbol{+}$:
1/22/2004
EE 42 Lecture 2

Current-Voltage Relationship

- In this course, we deal with circuits that perform computations, where the numbers are voltages.
- Voltages appear at the input, and create current in the devices, which in turn changes the output voltage-and computation has taken place.
- The relationship between current and voltage in a device is fundamental. Circuit elements are characterized by their current-voltage relationships. It is these relationships that allow us to design and analyze circuits.
- We will now present current-voltage relationships (called i-v relationships for short) for basic circuit elements.

Basic Circuit Elements

- Resistor
\square Current is proportional to voltage (linear)
- Ideal Voltage Source
\square Voltage is a given quantity, current is unknown
- Wire (Short Circuit)
\square Voltage is zero, current is unknown
- Ideal Current Source
- Current is a given quantity, voltage is unknown
- Air (Open Circuit)
\square Current is zero, voltage is unknown
1/22/2004
EE 42 Lecture 2

Resistor

- The resistor has a currentvoltage relationship called Ohm's law:
$v=i R$
where R is the resistance in Ω, i is the current in A, and v is the voltage in V, with reference directions as pictured.
- If R is given, once you know i, it is easy to find v and vice-versa.
- Since R is never negative, a resistor always absorbs power...

Ideal Voltage Source

- The ideal voltage source explicitly defines the voltage between its terminals.
\square Constant (DC) voltage source: $\mathrm{Vs}=5 \mathrm{~V}$
\square Time-Varying voltage source: Vs = $10 \sin (\mathrm{t}) \mathrm{V}$
\square Examples: batteries, wall outlet, function generator, ...
- The ideal voltage source does not provide any information about the current flowing through it.
- The current through the voltage source is defined by the rest of the circuit to which the source is attached. Current cannot be determined by the value of the voltage.
- Do not assume that the current is zero!

1/22/2004

Wire

- Wire has a very small resistance.
- For simplicity, we will idealize wire in the following way: the potential at all points on a piece of wire is the same, regardless of the current going through it.
\square Wire is a 0 V voltage source
\square Wire is a 0Ω resistor
- This idealization (and others) can lead to contradictions on paper-and smoke in lab.

Ideal Current Source

- The ideal current source sets the value of the current running through it.
\square Constant (DC) current source: $I_{S}=2 \mathrm{~A}$
\square Time-Varying current source: $I_{S}=-3 \sin (\mathrm{t}) \mathrm{A}$

\square Examples: few in real life!
- The ideal current source has known current, but unknown voltage.
- The voltage across the voltage source is defined by the rest of the circuit to which the source is attached.
- Voltage cannot be determined by the value of the current.
- Do not assume that the voltage is zero!

Air

- Many of us at one time, after walking on a carpet in winter, have touched a piece of metal and seen a blue arc of light.
- That arc is current going through the air. So is a bolt of lightning during a thunderstorm.
- However, these events are unusual. Air is usually a good insulator and does not allow current to flow.
- For simplicity, we will idealize air in the following way: current never flows through air (or a hole in a circuit), regardless of the potential difference (voltage) present.
\square Air is a 0 A current source
\square Air is a very very big (infinite) resistor
- There can be nonzero voltage over air or a hole in a circuit!

