Week 9a

OUTLINE

• MOSFET I_D vs. V_{GS} characteristic
• Circuit models for the MOSFET
 – resistive switch model
 – small-signal model

Reading

• Rabaey et al.: Chapter 3.3.2
• Hambley: Chapter 12 (through 12.5); Section 10.8
 (Linear Small-Signal Equivalent Circuits)
I_D vs. V_{DS} Characteristics

The MOSFET I_D-V_{DS} curve consists of two regions:

1) **Resistive or “Triode” Region:** $0 < V_{DS} < V_{GS} - V_T$

 \[
 I_D = k'_n \frac{W}{L} \left[V_{GS} - V_T - \frac{V_{DS}}{2} \right] V_{DS}
 \]

 where $k'_n = \mu_n C_{ox}$

2) **Saturation Region:** $V_{DS} > V_{GS} - V_T$

 \[
 I_{DSAT} = \frac{k'_n}{2} \frac{W}{L} \left(V_{GS} - V_T \right)^2
 \]

 where $k'_n = \mu_n C_{ox}$

 “CUTOFF” region: $V_G < V_T$
Overview of NMOSFET Regions

1. Cutoff region:
 Conditions: \(V_{GS} < V_T \), any value of \(V_{DS} \)
 \[I_D = 0 \]

2. Linear (or Resistive, or Triode) region:
 \(V_{GS} > V_T, (V_{GS} - V_T) > V_{DS} \)
 \[I_D = (f_1 \times f_2 \times f_3) V_{DS} \]
 where
 \(f_1 = \mu C_{ox} \) (depends on the fabrication process)
 \(f_2 = W/L \) (chosen by the design engineer)
 \(f_3 = f_3(V_{GS}, V_T, V_{DS}) = [V_{GS} - V_T - V_{DS}/2] \)
 \(\sim (V_{GS} - V_T) \) if \((V_{GS} - V_T) >> V_{DS}/2 \)

3. Saturation region:
 \(V_{DS} > (V_{GS} - V_T) = V_{DSaturation} = (V_{GS} - V_T)^2 \)
 \[I_D = (1/2) f_1 \times f_2 \times (V_{GS} - V_T)^2 \]

EECS42, Spring 2005
Week 9a, Slide 3
Prof. White
MOSFET I_D vs. V_{GS} Characteristic

- Typically, V_{DS} is fixed when I_D is plotted as a function of V_{GS}.

Long-channel MOSFET

$V_{DS} = 2.5 \, \text{V} > V_{DSAT}$

Short-channel MOSFET

$V_{DS} = 2.5 \, \text{V} > V_{DSAT}$
MOSFET V_T Measurement

- V_T can be determined by plotting I_D vs. V_{GS}, using a low value of V_{DS}:

$$I_D = k'_n \frac{W}{L} \left[V_{GS} - V_T - \frac{V_{DS}}{2} \right] V_{DS}$$
Subthreshold Conduction (Leakage Current)

- The transition from the ON state to the OFF state is gradual. This can be seen more clearly when I_D is plotted on a logarithmic scale:

- In the subthreshold ($V_{GS} < V_T$) region,

 $$I_D \propto \exp \left(\frac{q V_{GS}}{n k T} \right)$$

 This is essentially the channel-source pn junction current. (n, the emission factor, is between 1 and 2) (Some electrons diffuse from the source into the channel, if this pn junction is forward biased.)
Qualitative Explanation for Subthreshold Leakage

- The channel \(V_c \) (at the Si surface) is capacitively coupled to the gate voltage \(V_G \):

Using the capacitive voltage divider formula:

\[
\Delta V_c = \frac{C_{ox}}{C_{ox} + C_{dep}} \Delta V_G
\]

The forward bias on the channel-source pn junction increases with \(V_G \) scaled by the factor \(C_{ox} / (C_{ox} + C_{dep}) \)

\[
\Rightarrow n = \frac{C_{ox} + C_{dep}}{C_{ox}} = 1 + \frac{C_{dep}}{C_{ox}}
\]
Slope Factor (or Subthreshold Swing) S

- S is defined to be the inverse slope of the log (I_D) vs. V_{GS} characteristic in the subthreshold region:

$$1/S = \frac{q}{kT} \ln(10)$$

Units: Volts per decade

Note that $S \geq 60$ mV/dec at room temperature:

$$\left(\frac{kT}{q}\right) \ln(10) = 60 \text{ mV}$$
V_T Design Trade-Off

(Important consideration for digital-circuit applications)

- Low V_T is desirable for high ON current
 \[I_{DSAT} \propto (V_{DD} - V_T)^\eta \quad 1 < \eta < 2 \]
 where V_{DD} is the power-supply voltage

...but high V_T is needed for low OFF current

![Graph showing the trade-off between V_T and I_{DS}](Image)
The MOSFET as a Resistive Switch

- For digital circuit applications, the MOSFET is either OFF \((V_{GS} < V_T)\) or ON \((V_{GS} = V_{DD})\). Thus, we only need to consider two \(I_D\) vs. \(V_{DS}\) curves:
 1. the curve for \(V_{GS} < V_T\)
 2. the curve for \(V_{GS} = V_{DD}\)
Equivalent Resistance R_{eq}

- In a digital circuit, an n-channel MOSFET in the ON state is typically used to discharge a capacitor connected to its drain terminal:
 - gate voltage $V_G = V_{DD}$
 - source voltage $V_S = 0$ V
 - drain voltage V_D initially at V_{DD}, discharging toward 0 V

The value of R_{eq} should be set to the value which gives the correct propagation delay (time required for output to fall to $\frac{1}{2}V_{DD}$):

\[
R_{eq} \approx \frac{3}{4} \frac{V_{DD}}{I_{DSATn}} \left(1 - \frac{5}{6} \lambda_n V_{DD} \right)
\]
Figure 0.1 CMOS circuits and their schematic symbols
Typical MOSFET Parameter Values

- For a given MOSFET fabrication process technology, the following parameters are known:
 - V_T (~0.5 V)
 - C_{ox} and k' (<0.001 A/V²)
 - V_{DSAT} (≤ 1 V)
 - λ (≤ 0.1 V⁻¹)

Example R_{eq} values for 0.25 µm technology ($W = L$):

<table>
<thead>
<tr>
<th>V_{DD} (V)</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS (kΩ)</td>
<td>35</td>
<td>19</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>PMOS (kΩ)</td>
<td>115</td>
<td>55</td>
<td>38</td>
<td>31</td>
</tr>
</tbody>
</table>

How can R_{eq} be decreased?
P-Channel MOSFET Example

- In a digital circuit, a p-channel MOSFET in the ON state is typically used to charge a capacitor connected to its drain terminal:
 - gate voltage $V_G = 0 \text{ V}$
 - source voltage $V_s = V_{DD}$ (power-supply voltage)
 - drain voltage V_D initially at 0 V, charging toward V_{DD}

\[R_{eq} \approx \frac{3}{4} \left| I_{DSATp} \right| \left(1 - \frac{5}{6} \lambda_p V_{DD} \right) \]

\[I_{DSAT} = -\frac{k_p}{2} \frac{W}{L} (V_{DD} - |V_{Tp}|)^2 \]
Common-Source (CS) Amplifier

- The input voltage v_s causes v_{GS} to vary with time, which in turn causes i_D to vary.

- The changing voltage drop across R_D causes an amplified (and inverted) version of the input signal to appear at the drain terminal.

$$V_{DD} - v_{OUT} = v_{DS} \quad \text{(KVL)}$$

$$v_{IN} = v_{GS}$$

$$v_{OUT} = v_{DS}$$

$$v_{DS} = -i_D R_D$$
Notation

- Subscript convention:
 - $V_{DS} \equiv V_D - V_S$, $V_{GS} \equiv V_G - V_S$, etc.

- Double-subscripts denote DC sources:
 - V_{DD}, V_{CC}, I_{SS}, etc.

- To distinguish between DC and incremental components of an electrical quantity, the following convention is used:
 - **DC quantity**: upper-case letter with upper-case subscript
 - I_D, V_{DS}, etc.
 - **Incremental quantity**: lower-case letter with lower-case subscript
 - i_d, v_{ds}, etc.
 - **Total (DC + incremental) quantity**:
 - lower-case letter with upper-case subscript
 - i_D, v_{DS}, etc.
Load-Line Analysis of CS Amplifier

- The operating point of the circuit can be determined by finding the intersection of the appropriate MOSFET i_D vs. v_{DS} characteristic and the load line:

$$V_{DD} = R_D i_D + v_{DS}$$

load-line equation:

- $R_D = 10k\Omega$
- $I_D (V_{DS}=0) = \frac{V_{DD}}{10k\Omega} = \frac{5}{10^4}$

Δ v_{GS} = +0.5V

Δ v_{DS} = -1.5V

$v_{DS} (V)$

$i_D (mA)$

$v_{GS} (V)$

Load Line

v_{DD} / R_D
Voltage Transfer Function

Goal:
Operate the amplifier in the high-gain region, so that small changes in v_{IN} result in large changes in v_{OUT}

(1): transistor biased in cutoff region
(2): $v_{IN} > V_T$; transistor biased in saturation region
(3): transistor biased in saturation region
(4): transistor biased in “resistive” or “triode” region
Quiescent Operating Point

• The operating point of the amplifier for zero input signal \(v_s = 0 \) is often referred to as the **quiescent operating point**. (Another word: *bias*.)

 – The bias point should be chosen so that the output voltage is approximately centered between \(V_{DD} \) and 0 V.

 – \(v_s \) varies the input voltage around the input bias point.

Note: The relationship between \(v_{OUT} \) and \(v_{IN} \) is not linear; this can result in a distorted output voltage signal. If the input signal amplitude is very small, however, we can have amplification with negligible distortion.
Bias Circuit Example
Rules for Small-Signal Analysis

• A DC supply \textit{voltage source} acts as a \textit{short circuit}
 – Even if AC current flows through the DC voltage source,
 the AC voltage across it is zero.

• A DC supply \textit{current source} acts as an \textit{open circuit}
 – Even if AC voltage is applied across the current source,
 the AC current through it is zero.
NMOSFET Small-Signal Model

\[i_d = \frac{\partial i_D}{\partial v_{GS}} v_{gs} + \frac{\partial i_D}{\partial v_{DS}} v_{ds} = g_m v_{gs} + g_o v_{ds} \]

\[g_m \equiv \frac{\partial i_D}{\partial v_{GS}} \approx \frac{W}{L} k'(V_{GS} - V_T) \quad \text{transconductance} \]

\[g_o \equiv \frac{\partial i_D}{\partial v_{DS}} \approx \lambda I_D \quad \text{output conductance} \]
If L is small, the effect of ΔL to reduce the inversion-layer "resistor" length is significant

$\rightarrow I_D$ increases noticeably with ΔL (i.e. with V_{DS})

$$I_D = I_D'(1 + \lambda V_{DS})$$

λ is the slope

I_D' is the intercept

Channel-Length Modulation
Small-Signal Equivalent Circuit

\[v_{out} = -g_m v_{gs} \left(r_o \parallel R_D \right) \]

voltage gain \[A_v = \frac{v_{out}}{v_{in}} = -g_m \left(r_o \parallel R_D \right) \]