EECS151/251A - Homework 3 Solutions
Problem 1

(1.1)
\[\text{Out} = \overline{ABC}D + \overline{AB}CD + \overline{AB}C\overline{D} + \overline{AB}CD + \overline{ABC}D + \overline{ABCD} + \overline{ABC}\overline{D} + \overline{ABCD} + \overline{ABC}D + \overline{ABCD} \]

(1.2)
\[Q = \overline{A}B + \overline{BC} + C\overline{D} \]
(1.3)

Figure 1: Direct implementation of the simplified SOP representation.

Figure 2: NAND-only implementation of the simplified SOP representation.
Problem 2

(2.1)

\[Q = \overline{B}\overline{C}D + A\overline{B}\overline{C} + \overline{A}\overline{D}\overline{E} + BD\overline{E} + B\overline{C}E\overline{F} \]
\(Q = (CE + \overline{AB}D + \overline{A}DE + BCD + BEF) \)
\(Q = (\overline{C} + \overline{E})(A + B + D)(A + D + E)(B + \overline{C} + \overline{D})(\overline{B} + \overline{E} + \overline{F}) \)

For this choice of \(x \) values, the functions are identical - they have the same truth table if evaluated. However, there can be configurations such that the same \(x \) is utilized differently for SOP and POS representations, resulting in different functions representing the same specification truth table.
Problem 3

(3.1)

(3.2)

```verilog
module pattern_detector (
  input wire in,
  input wire clk,
  output wire out);

reg [2:0] state = 0;
localparam M0 = 0;
localparam M1 = 1;
localparam M2 = 2;
localparam M3 = 3;
localparam M4 = 4;
localparam M5 = 5;
```
assign out = (state == M5) ? 1'b1 : 1'b0;

always @ (posedge clk)
begin

case(state)
M0:
begin
 if(in == 1) state <= M1;
 else if(in == 0) state <= M0;
end

M1:
begin
 if(in == 1) state <= M1;
 else if(in == 0) state <= M2;
end

M2:
begin
 if(in == 1) state <= M1;
 else if(in == 0) state <= M3;
end

M3:
begin
 if(in == 1) state <= M4;
 else if(in == 0) state <= M0;
end

M4:
begin
 if(in == 1) state <= M1;
 else if(in == 0) state <= M5;
end

M5:
begin
 if(in == 1) state <= M1;
 else if(in == 0) state <= M0;
end
endcase
end
endmodule
module pattern_detector (in, clk, out);

reg [2:0] state = 0;
localparam M0 = 0;
localparam M1 = 1;
localparam M2 = 2;
localparam M3 = 3;
localparam M4 = 4;
localparam M5 = 5;
assign out = (state == M5) ? 1'b1 : 1'b0;

always @(posedge clk)
begin
 case(state)
 M0:
 begin
 if(in == 1) state <= M1;
 else if(in == 0) state <= M0;
 end
 M1:
 begin
 if(in == 1) state <= M1;
 else if(in == 0) state <= M2;
 end
 M2:
 begin
 if(in == 1) state <= M1;
 else if(in == 0) state <= M3;
 end
 M3:
 begin
 if(in == 1) state <= M4;
 else if(in == 0) state <= M0;
 end
 M4:
 begin
 if(in == 1) state <= M1;
 else if(in == 0) state <= M5;
 end
 M5:
 begin
 if(in == 1) state <= M1;
 else if(in == 0) state <= M3;
 end
 endcase
end
module pattern_detector (
 input wire in,
 input wire clk,
 output reg out);

reg [2:0] state = 0;
localparam M0 = 0;
localparam M1 = 1;
localparam M2 = 2;
localparam M3 = 3;
localparam M4 = 4;

always @(posedge clk)
begin

case(state)
M0:
begin
 out <= 1'b0;
 if(in == 1) state <= M1;
 else if(in == 0) state <= M0;
end

M1:
begin
 out <= 1'b0;
 if(in == 1) state <= M1;
 else if(in == 0) state <= M2;
end

M2:
begin
 out <= 1'b0;
 if(in == 1) state <= M1;
 else if(in == 0) state <= M3;
end

M3:
begin
 out <= 1'b0;
 if(in == 1) state <= M4;
 else if(in == 0) state <= M0;
end

M4:
begin
 if(in == 1) state <= M1;
 else if(in == 0)
 begin
 state <= M2;
 out <= 1'b1;
 end
end
endcase
end
endmodule