EECS151/251A Midterm 1

Review Session
Zhenghan Lin & Harrison Liew

Midterm Logistics

e Finish your practice exam ASAP!

o Remember, everything must emulate the exam day environment/sequence
e Exam: Oct. 6 @ 3:40pm - 5:00pm PST (except for approved accommodations)

o PDFformat, 5 questions + subparts

o Mostly handwritten (drawing diagrams, multiple choice selections, not the

same as previous midterm formats)

o No long-form written answers, only some short answers
e You will receive an email with a Google Doc link before the exam

o Links to exam PDF, submission forms, errata

Berkeley

UNIVERSITY OF CALIFORNIA

Midterm Scope

5 questions on topics through Lecture 10

Boolean logic (translation, simplification)

FSMs (construct from specification, waveforms)

RISC-V instructions (instr. formats, address ranges, pseudo-insts)
RISC-V datapath (Verilog of datapath/control logic, extending RV32| w/
new inst., timing)

5. Verilog (deduce function from code, write some small code snippets)

N

Logic (FA18, Problem 1)

[PROBLEM 1] Combinational Logic Design and Optimization (10 Pts)

a) Consider the following truth table. Use K-maps to derive a minimized sum-of-products expression for
the outputs Cy and S, only. (4 Pts)

A, Ay B, By G35, Sy
0 00D C0C|jOOO
0 001|001
0 010|010
0 011|011
0100001
0101|010
011 ¢0j011
0111100
1 000|010
1 00 1/011
1 010|100
1011|101
1100j011
1101|100
1110101
1111|110

b) What function does this truth table represent? Explain in words — no gate-level drawings are required.
(1 Pts)

Berkeley

UNIVERSITY OF CALIFORNIA

Logic (FA18, Problem 1

[PROBLEM 1] Combinational Logic Design and Optimization (10 Pts)

a) Consider the following truth table. Use K-maps to derive a minimized sum-of-products expression for
the outputs Cg and Sy only. (4 Pts) By - \ I \

pY Y
RMS‘Q\

A, A, B, B, C, S, S,

0 00D O0|lOOO

0 00 1/001

0 010lo1o0 Of\oo
0 01 1/011 =
0100/001 ")
01 01/010 H

01 10/011 "b
0111|100 fDO
1 000/010

1 00 1011

1 010/100

101 1/101 GQ
1 10 0/011 /
110 1/100 -
1 11 0/101

1111|110

CD - p]6]+A1Ab©O Afﬁ[)(hﬁf) S ??3@3 %’ﬁawéo j%@@},
/

b) What function does this truth table represent? Explain in words — no gate-level drawings are required.
(1 Pts)

Berkeley

UNIVERSITY OF CALIFORNIA

Logic (FA18, Problem 1)

[PROBLEM 1] Combinational Logic Design and Optimization (10 Pts)

a) Consider the following truth table. Use K-maps to derive a minimized sum-of-products expression for
the outputs Cy and S, only. (4 Pts)

A, A, B; B; € SiS G

L (s e L R T))

000O0|ooO0O Ay
0001|001 BB, 00 01 11 10
0010[/0o10

0011|011 00
0100|001 T
0101/010 01 1
0110|011

0111|100 11
1000|010 ‘

100 1]/o11 10
1010|100

1011|101

1100[/011 Co = A8, + A;AxBy + AB, By
1101|100

1110[/101

1111|110

b) What function does this truth table represent? Explain in words — no gate-level drawings are required.
(1 Pts)

Berkeley sum S and a single carry out bit Cy.

UNIVERSITY OF CALIFORNIA

This is a 2-bit adder. It adds A and B which are each 2 bits wide (without a carfy-in) and produces a 2 bit

So
AsAo

BBy N\ 00 01 11 10
00

01

1
111
 SSESES

10

So = ADE—(; + I:Bu = A¢DBg

FSM (FA18, Problem 2)

[PROBLEM 2] Finite State Machines (10 Pts)

Consider the following circuit
with x the input and z the

output. L —)
S |
] o | o
2) %o . J
h |
Clock :
(
I D, 0:
¢ b

a) Is this a Mealy or a Moore machine? Why? (2 Pts)

b) Write the Boolean expressions for Flip-Flop inputs D, and D,, and the system output z. (2 Pts)

UNIVERSITY OF CALIFORNIA

Berkeley

FSM (FA18, Problem 2)ESEee

[PROBLEM 2] Finite State Machines (10 Pts)

Consider the following circuit
with x the input and z the o
output. | -

a) Is this a Mealy or@nachine? Why? (2 Pts) W
__.--"‘""

*""{ R
b) Write the Boolean expressions for Flip-Flop inputs D, and D,, and the system output z. (2 Pts) -JY’ L/

Berkeley

UNIVERSITY OF CALIFORNIA

FSM (FA18, Problem 2)

[PROBLEM 2] Finite State Machines (10 Pts)

Consider the following circuit 0)
with x the input and z the (;
output. L =))

—
- o | @ | r
. —] i af]
! $
Clock ” ok :
I D, 0:
o > af

a) Is this a Mealy or a Moore machine? Why? (2 Pts)
This is a Moore machine. The output z depends only on the state registers Q; and Q,, and not on the input x.

b) Write the Boolean expressions for Flip-Flop inputs D, and D,, and the system output z. (2 Pts)

Di=x-(Q1+ Q)

Dy=x-(Q;+Q ;)

UNIVERSITY OF CALIFORNIA

Berkeley

z2=Q1Q,

FSM (FA18, Problem 2 continued)

[PROBLEM 2] Finite State Machines (10 Pts)

Consider the following circuit
with x the input and z the

output. L —)
S |
] L | o
.) e * |
= !
N |
Clock :
|- D, 0:
13 Q [

c) Derive the state transition table for the circuit. (3 Pts)

d) Draw a state diagram for the system. (3 Pts)

Berkeley

UNIVERSITY OF CALIFORNIA

FSM (FA18, Problem 2

[PROBLEM 2] Finite State Machines (10 Pts)

Consider the following circuit
with x the input and z the e
output. | —

c) Derive the state transition table for the circuit. (3 Pts)

d) Draw a state diagram for the system. (3 Pts)

Berkeley

UNIVERSITY OF CALIFORNIA

FSM (FA18, Problem 2)

[PROBLEM 2] Finite State Machines (10 Pts)

Consider the following circuit
with x the input and z the

output. L —)
S |
] L | o
. [{D ot -
|
Clock P ak
|- D, 0:
13 Q [

c) Derive the state transition table for the circuit. (3 Pts)

d) Draw a state diagram for the system. (3 Pts)

Berkeley

UNIVERSITY OF CALIFORNIA

I)

Q

resent

State

(&5
0

9

[nput

Next
State
Q2 O
1's
l 0
0 0
| 1
0 0
| |
0 0
0 1
0
0

Output

01

FSM (FA19, Problem 2)

2) State Machines (16 points, 20 minutes)
A state transition diagram for a finite state machine (FSM) is shown in Figure 2.

Figure 2.

a) If the FSM starts in state S0, in which state will it be after the input pattern 01011000101?
O s7 O so © st)82 O s8
O s6 O s4 O s3 O s9 O s5

UNIVERSITY OF CALIFORNIA

FSM (FA19, Problem 2o

2) State Machines (16 points, 20 minutes)
A state transition diagram for a finite state machine (FSM) is shown in Figure 2.

0 1/0

0/1 1/1 @

Figure 2.
a) If the FSM starts in state SO, in which state will it be after the input pattern 010110001017
@ s7 O s0 O st O 82 O ss8
O 86 O s4 O S3 O s9 O S5

Berkeley

UNIVERSITY OF CALIFORNIA

FSM (FA19, Problem 2 continued)

. 5 = 2) State Machines (continued)
2) State Machines (16 points, 20 minutes) —)— , ; : i -
A state transition diagram for a finite state machine (FSM) is shown in Figure 2. b) If the state is represented by a four-bit register S[3:0] and S4 = 4’'b0100 and S9 = 4'b1001, complete

the following diagram:

0/0 1/0

In

——

CLO Out0

ol Out
Clk S SO D
CL1 Outl

D Q
Clk S S1
cL2 put2

D Q
Clk > S2
CL3 Out3

D Q
Clk S3

Figure 2. P>

UNIVERSITY OF CALIFORNIA

FSM (FA19, Problem 2

2) State Machines (continued) o
2) State Machines (16 points, 20 minutes) —)— . : _ o A o
A state transition diagram for a finite state machine (FSM) is shown in Figure 2. b) If the state is represented by a four-bit register S[3:0] and S4 = 4'b0100 and S9 = 4'b1001, complete

the following diagram:

0/0 1/0

(0
0/0 1/0|
(s

ot = M £ S9einm

o ™,
Ak 2 ‘ —

Berkeley

UNIVERSITY OF CALIFORNIA

FSM (FA19, Problem 2 continued)

A 5 2) State Machines (continued)
2) State Machines (16 points, 20 minutes) —)— g z 2 - -
A state transition diagram for a finite state machine (FSM) is shown in Figure 2. b) If the state is represented by a four-bit register S[3:0] and S4 = 4’'b0100 and S9 = 4'b1001, complete

the following diagram:

0/0 1/0

: In
CLo Out0 m
s (e
Clk s(? ::'."'0'-00—-
o«u—f‘"H
Cl1 o a Outl Quts
Clk

s1 /n -
cvto
a I U2 Qup 2elDe
Clk SZQ 00'1
Ok out Y =
CL3 Out3
D Q

Figure 2.

UNIVERSITY OF CALIFORNIA

FSM (FA19, Problem 2 continued)

2) State Machines (16 points, 20 minutes)
A state transition diagram for a finite state machine (FSM) is shown in Figure 2.

0/0 1/0 2) State Machines (continued)

c) Your colleague wrote the following code to represent this FSM:
wire[2:0] next state;
reg[3:0] state;

always @ (posedge clk)
begin
state <= next_state;
end
And they also got the rest of the code correctly.
Draw a state machine diagram that corresponds to this code.

Figure 2.

UNIVERSITY OF CALIFORNIA

3) Datapathology (24 points, 25 minutes)
| The datapath below implements the RW32| instruction set A

FSM (FA19, Problem 2

2) State Machines (16 points, 20 minutes)
A state transition diagram for a finite state machine (FSM) is shown in Figure 2.

0/0 1/0 2) State Machines (continued)

c) Your colleague wrote the following code to represent this FSM:
wire[2:0] next state;
reg[3:0] state;

always @ (posedge clk)
begin
state <= next state;
end

_— And they also got the rest of the code correctly.
Draw a state machine diagram that corresponds to this code.

Figure 2.

Berkeley

UNIVERSITY OF CALIFORNIA

FSM (FA19, Problem 2 continued)

2) State Machines (continued)

c) Your colleague wrote the following code to represent this FSM:
wire[2:0] next state;
reg[3:0] state;

always @ (posedge clk)
begin
state <= next_state;
end
And they also got the rest of the code correctly.
Draw a state machine diagram that corresponds to this code.

UNIVERSITY OF CALIFORNIA

RISC-V Datapath (FA19, Problem 3)

3) Datapatholi 24 points, 25 minutes
The datapath below implements the RV32l instruction set.

+4
wh pe PE 2
DataD Reglrs1] I BN ¢
Inst(11:7] .
Inst[19:15] DatoR
Inst[24:20] : (4 odde
DataW e
1
DMEM
T
Inst I
clk Reg[rs2]
[31:7] Imm. o
Gen Imm([31:0]
PCSel Inst[31:0] ImmSel RegWEn BrUn BT Bsel ALUSel MemRW LdSel WBSel
Asel
Control logic BrEq

a) In the RISC-V datapath above, mark what is used by a jal instruction.
jal (Jump and link): R[rd] = pc+4; pc = pc + {imm,1b’0}

31 30 21 20 19 12 11 76 0
| imm[20] [imm[10:1] [imm[11] [imm[19:12] | rd [opcode |
1 10 1 8 5 7

offset[20:1] dest JAL

Select | pCSel Mux: O “pc+4"branch O “alu” branch O * (don't care)
onrzxer ASelMux: QO “pc” branch QO Reglrs1]branch QO * (don’t care)
BSel Mux: QO “imm” branch QO Reg[rs2] branch QO * (don’t care)
WBSel Mux: O “pc+4”branch (O “alu” branch QO “mem” branch QO * (don't
care)

Selggttall Datapath units: O Branch Comp O Imm. Gen O Load Extend

apply | RegFile: O Read Reg|rs1] O Read Reg|rs2] O write Reg[rd]

Downloads [EECSI51.G. B > @ ~ % EECS151/2.. W Jalopnik| .. % Midterm 1.. & Spotify Pre.. @ Slack|Zhe.. # Signal ~ Messenger &3 Midterm 1. PP Brief Desi.. @ MeetingC.. ™ Apnotatio.. ~ &g z ©» 2 1140pm [

v 4 & ® O O @ wm-

Stamp Spotlight Eraser Format Undo Redo Clear Save

3) Datapathol, 24 points, 25 minutes
The datapath below implements the RV32I instruction set.

+4 ’
wb pe
*|DataD Reg(rs1]
olv_n Inst[11:7]
»| AddrD
Inst{19:15
i ! laddra Datar
o . mgzd:‘m AddB pos L
Reg []
Inst 1 i
clk Reg[rs]
317) m
Imm[31:0]

PCSel Inst[31:0] ImmSel RegWEn BrUn By B¢ ALUSel MemRW LdSel WBSel
Asel

Control logic BrEq

a) Inthe RISC-V datapath above, mark what is used by a jal instruction.
jal (Jump and link): R[rd] = pc+4; pc = pc+ {imm;1b’0}

31 30 21 20 19 12 11 a8 0
imm[20] imm([10:1] imm[11] imm[19:12] rd opcode
1 10 1 8 5 T

offset[20:1] dest JAL

Select | PCSel Mux: (O “pc +4” branch O “alu” branch O * (don't care)

O"riier ASel Mux: () “pc” branch O Regrs1] branch (O * (don’t care)
BSel Mux: | (O/“imm" branch O Req[rs2] branch (O * (don't care)
WBSel Mux: O/ “pc+4"branch (O “alu” branch O “mem" branch O * (don't
care) -

Se:ﬁg:a” Datapath units: (J Branch Comp (3 Imm. Gen O Load Extend

apply | RegFile: O Read Regrs1] O Read Reg|rs2] (3" Write Reg]rd]

RISC-V Datapath (FA19, Problem 3 continued)

3) Datapatholi 24 points, 25 minutes
The datapath below implements the RV32l instruction set.

wh pe pery 2
DataD Reglrs1] e ale__ N
Inst{11:7] b
Inst[19:15] DataR
Ins1{24:20] (% odde
DataW e
Fﬁ] DI'WEM 7y b) In the RISC-V datapath above, mark what is used by a auipc instruction.
;;-:7] ak' Regirsd] dL auipc (add upper immediate to pc): R[rd] = pc+ {imm,12b’0}
R Imm.
31 12::13 76 0
e Imm(31:0] [imm[31:12] [_rd_ | opcode]
20 5 7
U-immediate[31:12] dest AUIPC
PCSel Insif31:0] ImmSel RegWEn BrUn BT DSl ALUSel MemRW LdSel WBSel
Control logic BrEq Avsl
Select | pCSel Mux: O “pc+4”branch O *“alu” branch O *(don't care)
onrzxer ASel Mux: QO “pc” branch QO Regrs1]branch O * (don’t care)
. o . BSel Mux: QO “imm” branch QO Reg[rs2] branch QO * (don’t care)
a) In the RISC-V datapath above, mark what is used by a jal instruction. WBSel Mux: O “pc+4”branch O *“alu” branch O “mem’ branch O * (don't
jal (Jump and link): R[rd] = pc+4; pc = pc + {imm,1b’0} care)
31 20 21 29 25 22 11 16 g Select all| b 2tapath units: O Branch Comp O Imm. Gen O Load Extend
| imm[20] | imm[10:1] | imm[11] [imm[19:12] | rd | opcode] that) ;
1 10 1 s 5 3 apply | RegFile: O Read Reg|rs1] O Read Reg|rs2] O write Regrd]
offset[20:1] dest JAL

Select | pCSel Mux: O “pc+4"branch O “alu” branch O * (don't care)
onrzxer ASelMux: QO “pc” branch QO Reglrs1]branch QO * (don’t care)
BSel Mux: QO “imm” branch QO Reg[rs2] branch QO * (don’t care)
WBSel Mux: O “pc+4”branch (O “alu” branch QO “mem” branch QO * (don't
care)

Selggttall Datapath units: O Branch Comp O Imm. Gen O Load Extend

apply | RegFile: O Read Reg|rs1] O Read Reg|rs2] O write Reg[rd]

Downloads [EECSI51.G. B > @ ~ % lrucache-.. W Jalopnik].. W& Midterm 1 ..

3) Datapathol, 24 points, 25 minutes
The datapath below implements the RV32I instruction set.

=) Spotify Pre.. @ Slack | Zhe...

Signal ~ Messenger (3 Midterm 1. P®Brief Desi.. @ MeetingC.. ™ Apnotatio.. ~ @ o W O &

= =

Clear

I-_J__-! w

Save

@ 9 .

Format Undo Redo

v 7

Spotlight

4

Stamp Eraser

™ EE B 1143PM

L]

+4 ’
wb pe
*|DataD Reg(rs1]
olv_n Inst[11:7]
| AddrD
v : Inst[19:15] olidha DetsA
o |_Inst{24:20 AddB pos
Reg [b) In the RISC-V datapath above, mark what is used by a auipc instruction.
'[;7;] h 1 ok’ Reglrs?) auipc (add upper immediate to pc): R[rd] = pc+ {imm,12b’0}
: Imm. s T
J 12 11 76 0
Imm[31:0] [imm[31:12] | rd | opcode]
20 5 7
U-immediate[31:12] dest AUIPC
PCSel Ins{31:0] ImmSel RegWEn Brun Bt D%l ALUSel MemRW LdSel WBSel
Control logic BrEq e \/
Select | pCSel Mux: O “pc+4"branch QO *“alu” branch QO * (don't care)
onrzﬁer ASel Mux: (O “pc” branch O Reg[rs1] branch (O * (don't care)
‘ o . BSel Mux: (O “imm” branch (O Reg[rs2] branch (O * (don't care)
a) Inthe RISC-V datapath above, mark what is used by a jal instruction. WBSel Mux: O “pc+4"branch O “alu” branch O “mem’ branch O * (don't
jal (Jump and link): R[rd] = pc+4; pc = pc + {imm,1b'0} care) |
31 30 21 20 19 12 11 16 0 Select alf Datapath units: (J Branch Comp @ Imm. Gen O Load Extend
imm[20] [imm[10:1] [imm[11] | imm[19:12] rd | opcode that - ro
1 10 1 = 5 - apply | RegFile: O Read Reg]rs1] O Read Reg[rs2] (' Write Reg]rd]
offset[20:1] dest JAL
Select | pCSel Mux: O “pc+4”branch () “alu” branch O * (don't care)
O"riier ASel Mux: (O “pc” branch O Regrs1] branch (O * (don’t care)
BSel Mux: (O “imm” branch O Req[rs2] branch (O * (don't care)
WBSel Mux: O “pc+4"branch (O “alu” branch O “mem" branch O * (don't
care)
Se:ﬁg:a” Datapath units: (J Branch Comp O Imm. Gen O Load Extend
apply | RegFile: O Read Reg]rs1] O Read Reg[rs2] O write Regrd]

RISC-V Datapath (FA19, Problem 3 continued)

3) Datapathology (continued)

c) The same datapath repeated, for reference

Reglrs1)

Ins{117)
Insi(19:15]

DateA

Ins)24:20]

AddrS pyen

Reg (] ,

Inst !
312) m b)

B‘u Imm{310]

PCSel Instf31:0) ImmSel RegWEn BUn Bt Bsel ALUSel MemRW LdSel WBSel
Asel

Control logic Brkq
Specify whether the following proposed instructions can be implemented using this datapath without modifications.

If the instruction can be implemented, specify an expression for the listed control signals, by following the example below.

Instruction Description Imple- Control Signals
mentable?
Add R[rd] = R[rs1] + R[rs2] Yes ALUSel = Add
add rd, rsl, rs2
WBSel = 1
Load word with add: R[rd] = RegWEn =
lwadd rd, rsl, rs2, imm | M[R[rs1] +imm] + R[rs2]
WBSel =
beq with writeback: R[rd] = R[rs1] + R[rs2] WBSel =
beq rd, rsl, rs2, imm
if (R[rs1] == R[rs2]) PCSel =
PC = PC + {imm, 1'b0}
PC-relative load: R[rd] = M[PC + imm] ASel =
lwpc rd, imm
BSel =

Register offset load: R[rd] = M[R[rs1] + R[rs2]] ASel =
lwreg rd, rsl, rs2

BSel =

= =

3) Datapathology (continued)
c¢) The same datapath repeated, for reference

ﬂD_
Wi
Data Reglrs!]
alw 3 Irest{ 1 1:7]
AddD
0 addr Inai{19:15]
poad ,1 st AddrA Datah s
= | instzezo) | o > -
1
IMEM]
Reg[] ,
| !
ek Reglrs2)
mm{31:0]
Asal
Control logic titq

Specify whether the following proposed instructions can be implemented using this datapath without modifications.

If the instruction can be implemented, specify an expression for the listed control signals, by following the example below.

Instruction Description Imple- Control Signals
mentable?

Add R[rd] = R[rs1] + R[rs2] Yes ALUSel = Add
add rd, rsl, rs2?

WBSel = 1
Load word with add: R[rd] = » RegWEnN =
lwadd rd, rsl, rs2, imm | M[R[rs1] + imm] + R[rs2] 7\

- . WBSel =
beq with writeback: R[rd] = R[rs1] + R[rs2] WBSel =
beq rd, rsl, rs2, imm ool
if (R[rs1] == Rlre2] X~ | PCSel =
PC = PC + {imm, 1'b0} :

PC-relative load: R[rd] = M[PC + imm] ASel =/
lwpe rd, imm

BSel =

Register offset load: R[rd] = M[R[rs1] + R[rs2]] ASel =
lwreqg rd, rsl, ra2
BSel =

Verilog (FA19, Problem 4)

4) Verilog (points, 20 minutes)
a) The following code describes a 3-bit linear-feedback shift register (LFSR), which generates a repeating
pattern of pseudo-random numbers.
module 1lfsr(
input [2:0] R,
input Load,
input Clock,
output reg [2:0] Q
):
always@ (posedge Clock)
if (Load)
Q <= R;
else Q <= {Q[1], Q0] * Q[2], Q[2]}:
endmodule
Complete the circuit generated from this code:

Lock b,

Bt & W Hyda Downloads [EECS151._G.. % lucache-.. W Jalopnik|. & Midterm1.. & Spotify Pre.. @ Slack|Zhe.. # Signal ~ Messenger &% Midterm 1. PP Brief Desi.. ®® MeetingC.. ™ Apnotatio. v &t o W 0 @Z ® B 1149pm [

& 0O H O

Verilog (FA19 Problem e

4) Verilog (points, 20 minutes)
a) The following code describes a 3-bit linear-feedback shift register (LFSR), which generates a repeating

pattern of pseudo-random numbers.
module 1fsr(

input [2:0] R,

input Load,

input Clock,

output reg [2:0] Q

) ;
always@ (posedge Clock)
if (Load)
Q <= R;
else Q <= {Q[1], Q0] * Q[2], Q[2]}:
endmodule

Complete the circuit generated from this code:

Verilog (FA19, Problem 4)

4) Verilog (points, 20 minutes)
a) The following code describes a 3-bit linear-feedback shift register (LFSR), which generates a repeating
pattern of pseudo-random numbers.
module 1lfsr(
input [2:0] R,
input Load, Joud
input Clock,

output reg [2:0] Q 1 D Q
); P40 P b Qq s ek

always@ (posedge Clock) et Clock | trle,...z
if (Load)
Q <= R;
else Q <= {Q[1], Q[0] * Q[2], Q[2]}:

endmodule
Complete the circuit generated from this code:

Lock b,

Verilog (FA19, Problem 4 continued)

4) Verilog (points, 20 minutes)
a) The following code describes a 3-bit linear-feedback shift register (LFSR), which generates a repeating
pattern of pseudo-random numbers.
module 1fsr(
input [2:0] R,
input Load,

input Clock, b) If the initial state of Q[2:0] is 3'b100, write the outputs that correspond to the first 8 cycles:
output reg [2:0] Q Cycle Q[2:0]
): 0 100
always@ (posedge Clock) 1
if (Load) 5
Q <= R;
else Q <= {Q[1], Q[0] * Q[2], Q[2]}: 8
endmodule 4
5
6
T

Berkeley

UNIVERSITY OF CALIFORNIA

Verilog (FA19, Problem

4) Verilog (points, 20 minutes)
a) The following code describes a 3-bit linear-feedback shift register (LFSR), which generates a repeating

pattern of pseudo-random numbers.
module 1fsr(

input [2:0] R,
input Load,

input Clock, b) If the initial state of Q[2:0] is 3'b1 00, write the outputs that correspond to the first 8 cycles:
output reg [2:0] Q Cycle Q[2:0] "
) ; 0 100
always@ (posedge Clock) 1
if (Load) 5
Q <= R;
else Q <= {Q[1], Q[0] * Q[2], Q[2]}: g
endmodule 4
5
6
7

Berkeley

UNIVERSITY OF CALIFORNIA

Verilog (FA19, Problem 4 continued)

4) Verilog (continued)
c) Similar code is shown below:
module 1lfsr (R, Load, Clock, Q) :
input [2:0] R;
input Load, Clock;
output reg [2:0] Q:

always@ (posedge Clock)

if |(Load)
Q <= R;
else begin
Q[0] = Q[2];
Q[1] = Q[0] ~ Q[2] :
Q[2] = Q[1]:
end

endmodule
Complete the circuit generated from this code:

0 1
_DQ_QL.L DQ.&L]_
Llock b,

UNIVERSITY OF CALIFORNIA

Downloads [EECS151_G % Iru cache - % Jalopnik|.. ¥ Midterm 1.. EJ Spotify Pre.. @ Slack|Zhe.. # Signal ~ Messenger &% Midterm 1. P ®Brief Desi.. ® Meeting C.. ™ Apnotatio. v & 1 z ©» B 1157em [

;& @ O O

Spotlight Eraser Format Undo

4) Verilog (continued)
c) Similar code is shown below:
module 1lfsr (R, Load, Clock, Q) :
input [2:0] R;
input Load, Clock:;
output reg [2:0] Q:

always@ (posedge Clock)
if |(Load)
Q <= R;
else begln |
Q[0]1/= Q[2]:
Q1] =(Q[0]) * Q[2] :
Q[2]| = Q[1]:
end
endmodule
Complete the circuit generated from this code:

Qo)) 7 o —j'__

UNIVERSITY OF CALIFORNIA

Verilog (FA19, Problem 4 continued)

4) Verilog (continued)
c) Similar code is shown below:
module 1lfsr (R, Load, Clock, Q) :
input [2:0] R;
input Load, Clock;
output reg [2:0] Q:

Compiete tne circuit generated Irom nis coae:

D Q D Q
Clock |
200 = -
always@ (posedge Clock)
if |(Load)
Q <= R; We= { 0,0, otiE
else begin I~ 3
Qo] = Q[2]1;
Q1] = Q[0] *~ Q[2]
Q2] = Q[1];
end
endmodule
Complete the circuit generated from this code:
—p Q_QJQ.L o Q_QLl_]. —; Q__lel_
Clock §, Clock

UNIVERSITY OF CALIFORNIA

Verilog (FA19, Problem 4 continued)

4) Verilog (continued)
c) Similar code is shown below:
module 1fsr (R, Load, Clock, Q)

d) If the R[2:0] value of 3'b100 is loaded initially, write the outputs that correspond to the first 8 cycles:
input [2:0] R;) Sl b : e G pu P cy

g Cycle Q[2:0]
input Load, Clock;
output reg [2:0] Q: 0 100
1
always@ (posedge Clock) 2
if |(Load)
Q <= R; 3
else begin 4
Q[0] = Q[2]; 5
Q[1] = Q[0] ~ Q[2]
Q[2] = Q[1]: B
end 7
endmodule
Complete the circuit generated from this code:
Q[o] Q1] Q[2]

: |

Llock b,

UNIVERSITY OF CALIFORNIA

O
Format

Verilog (FA19, Problem S €S moeaT

4) Verilog (continued)
c) Similar code is shown below:
module 1lfsr (R, Load, Clock, Q) :
input [2:0] R;
input Load, Clock:;
output reg [2:0] Q:

d) If the R[2:0] value of 3'b100 is loaded initially, write the outputs that correspond to the first 8 cycles:
Cycle Q[2:0]

0 100

1

always@ (posedge Clock)
if |(Load)
Q <= R;
else begin
Qo]
Q1)
Q2]

Qr2]:;
Q[o] * Q[2]
QI1]:

N | O B WN

end

endmodule
Complete the circuit generated from this code:

UNIVERSITY OF CALIFORNIA

