Outline

- Clock non-idealities
- Clock Distribution
- Chip Packaging
- Power Distribution
Administrative

- MT2 (finally) graded

- Final Project demo/interview
 - Friday 5/4 afternoon - signup for slot
Synchronous Timing
- Review
Synchronous Timing

CLK

In

R₁

C_{in}

Combinational Logic

R₂

C_{out}

Out
Latch Parameters

Delays can be different for rising and falling data transitions
Register Parameters

Delays can be different for rising and falling data transitions
Timing Constraints

\[t_{\text{clk-q,max}} \quad t_{\text{clk-q.min}} \]
\[t_{\text{setup}}, t_{\text{hold}} \]
\[t_{\text{logic,max}} \quad t_{\text{logic,min}} \]
Timing Constraints

Cycle time (max): \(T_{\text{Clk}} > t_{\text{clk-q,max}} + t_{\text{logic,max}} + t_{\text{setup}} \)

Race margin (min): \(t_{\text{hold}} < t_{\text{clk-q,min}} + t_{\text{logic,min}} \)
Clock Nonidealities
Clock Nonidealities

- **Clock skew**
 - Time difference between the sink (receiving) and source (launching) edge
 - Spatial variation in temporally equivalent clock edges; deterministic + random, t_{SK}

- **Clock jitter**
 - Temporal variations in consecutive edges of the clock signal; modulation + random noise
 - Cycle-to-cycle (short-term) t_{JS}
 - Long term t_{JL}

- **Variation of the pulse width**
 - Important for level sensitive clocking
Clock Uncertainties

Sources of clock uncertainty
Clock Skew and Jitter

- Both skew and jitter affect the effective cycle time and the race margin.
Positive Skew

Launching edge arrives before the receiving edge
Negative Skew

Receiving edge arrives before the launching edge
Timing Constraints

Minimum cycle time:
\[T_{\text{clk}} + \delta = t_{\text{clk-q,max}} + t_{\text{setup}} + t_{\text{logic,max}} \]
Timing Constraints

Hold time constraint:
\[t_{(clk-q,min)} + t_{(logic,min)} > t_{hold} + \delta \]
Longest Logic Path in Edge-Triggered Systems

Latest point of launching

t_{JS1}

Clk1

$t_{clk-Q,max}$

$t_{logic,max}$

T_{CLK}

Earliest arrival of next cycle

t_{setup}

$t_{JS2} - \delta$
Clock Constraints in Edge-Triggered Systems

If launching edge is late and receiving edge is early, the data will not be too late if:

\[t_{clk-q,\text{max}} + t_{\text{logic,\text{max}}} + t_{\text{setup}} < T_{\text{CLK}} - t_{JS,1} - t_{JS,2} + \delta \]

Minimum cycle time is determined by the maximum delays through the logic

\[t_{clk-q,\text{max}} + t_{\text{logic,\text{max}}} + t_{\text{setup}} - \delta + 2t_{JS} < T_{\text{CLK}} \]

Skew can be either positive or negative

Jitter \(t_{JS} \) usually expressed as peak-to-peak or \(N \times \text{rms} \) value
Shortest Path

Earliest point of launching

Clk1

-t_{JS1}

t_{clk-q,min}

t_{logic,min}

Clk2

-t_{JS2} + \delta

t_{hold}

Nominal clock edge

Data must not arrive before this time

Clk1

Clk2

In

Delay

R1

Combinational Logic

R2
Clock Constraints in Edge-Triggered Systems

If launching edge is early and receiving edge is late:

\[t_{clk-q,\text{min}} + t_{\text{logic, min}} - t_{JS,1} > t_{\text{hold}} + t_{JS,2} + \delta \]

Minimum logic delay

\[t_{clk-q,\text{min}} + t_{\text{logic, min}} > t_{\text{hold}} + 2t_{JS} + \delta \]

(This assumes jitter at launching and receiving clocks are independent – which usually is not true)
Datapath with Feedback

- Clock distribution
- Negative skew
- Positive skew
Clock Distribution
Clock Distribution

- Single clock generally used to synchronize all logic on the same chip (or region of chip)
 - Need to distribute clock over the entire region
 - While maintaining low skew/jitter
 - (And without burning too much power)
Clock Distribution

What’s wrong with just routing wires to every point that needs a clock?
H-Tree

Equal wire length/number of buffers to get to every location
More realistic H-tree

[Restle98]
Clock Grid

- No RC matching
- But huge power
Example: DEC Alpha 21164 (1995)

- 2 phase single wire clock, distributed globally
- 2 distributed driver channels
 - Reduced RC delay/skew
 - Improved thermal distribution
 - 3.75nF clock load, 20W power
 - 58 cm final driver width
- Local inverters for latching
- Conditional clocks in caches to reduce power

Clock waveform

$t_{\text{rise}} = 350\text{ps}$
$t_{\text{skew}} = 150\text{ps}$
$t_{\text{cycle}} = 3.3\text{ns}$

Location of clock driver on die

final drivers

pre-driver
Clock Skew in Alpha Processor
EV6 (Alpha 21264) Clocking
600 MHz – 0.35 micron CMOS

Global clock waveform

- 2 Phase, with multiple conditional buffered clocks
 - 2.8 nF clock load
 - 40 cm final driver width
- Local clocks can be gated “off” to save power
- Reduced load/skew
- Reduced thermal issues
- Multiple clocks complicate race checking

$t_{\text{rise}} = 350\text{ps}$
$t_{\text{cycle}} = 1.67\text{ns}$
$t_{\text{skew}} = 50\text{ps}$
21264 Clocking
EV6 Clock Results

GCLK Skew (at Vdd/2 Crossings)

GCLK Rise Times (20% to 80% Extrapolated to 0% to 100%)
EV7 Clock Hierarchy (2002)

Active Skew Management and Multiple Clock Domains

+ widely dispersed drivers
+ DLLs compensate static and low-frequency variation
+ divides design and verification effort
- DLL design and verification is added work
+ tailored clocks
Modern Processors

Apple A7

3rd Generation Intel® Core™ Processor: 22nm Process

New architecture with shared cache delivering more performance and energy efficiency

Quad Core die with Intel® HD Graphics 4000 shown above
Transistor count: 1.4Billion Die size: 160mm²
** Cache is shared across all 4 cores and processor graphics
Clock Animations

- By Phillip Restle (IBM)

Clock circuits live in center column.

32 global clock wires go down the red column.

Any 10 may be sent to a clock region.

Also, 4 regional clocks (restricted functionality).
Clocks have dedicated wires (low skew)

From: Xilinx Spartan 3 data sheet. Virtex is similar.
Low-skew Clocking in FPGAs

Global Clock Distribution Network

Figures from Xilinx App Notes
Die photo: Xilinx Virtex

Gold wires are the clock tree.
Chip Packaging
Chip Packaging

- Bond wires (~25µm) are used to connect the package to the chip
- Pads are arranged in a frame around the chip
- Pads are relatively large (~100µm in 0.25µm technology), with large pitch (100µm)
 - 60µm x 80µm at 80µm pitch in 45nm
- Many chips are ‘pad limited’
Pad Frame

Layout

Die Photo
Bonding Pad Design

Bonding Pad

Out

V_{DD}

V_{DD}

In

GND

GND

Out

100 µm
An alternative is ‘flip-chip’:

- Pads are distributed around the chip
- The solder balls are placed on pads
- The chip is ‘flipped’ onto the package
- Pads still large
 - But can have many more of them
ESD Protection

- When a chip is connected to a board or otherwise handled, there is unknown (potentially large) static voltage difference (a few kV)
- Equalizing potentials requires (large) charge flow through the pads
- Diodes sink this charge into the substrate – need guard rings to pick it up.
Pads + ESD Protection
When Things Go Bad
Stray Paths

- Clamp circuit sinks the ESD current
 - Typically a few stacked diodes (2-4)
Split Ground Rails

Bidirectional diode fixes the ESD path
Power Distribution
Power Supply Impedance

- No voltage source is ideal - $||Z|| > 0$
- Two principal elements increase Z:
 - Resistance of supply lines (IR drop)
 - Inductance of supply lines (L·di/dt drop)
Scaling and Supply Impedance

- Typical target for supply impedance is to get 5-10% variation of nominal supply (e.g., 100mV for 1V supply)

- In traditional scaling V_{dd} drops while power stays constant

- This forced drastic drop in supply impedance
 - $V_{dd} \downarrow, I_{dd} \uparrow \rightarrow |Z_{\text{required}}| \downarrow \downarrow$

- Today’s chips:
 - $|Z_{\text{required}}| \approx 1 \text{ m}\Omega$
 - $V_{dd} = 1V, P=100W \Rightarrow I_{dd}=100A$
 - For $\Delta V_{dd,\text{max}} = 100mV$, $Z_{dd,\text{max}} = 100mV/100A = 1\text{ m}\Omega$
IR Drop Example

- Intel Pentium 4: ~103W at ~1.275V
 - \(I_{dd} = 81 \text{Amps} \)

- For 10% IR drop, total distribution resistance must be less than 1.6m\(\Omega\)

- On-chip wire \(R \approx 20\text{m}\Omega/\text{sq.} \) (thick metal)
 - Can’t meet \(R \) requirement even with multiple, complete layers dedicated to power
 - Main motivation for flip-chip packaging
Power Delivery

- Achieving such low impedance requires a lot of resources:
 - ~70% of package pins just for power
 - Top 2-3 (thick) metal layers
Not Just Impedance - Electromigration

- On-chip wires: current limited to $\sim 1\text{mA}/\mu\text{m}$ for 5-7 year lifetime
On-Chip Power Distribution

- Power network usually follows pre-defined template (often referred to as “power grid”)

![Diagram of on-chip power distribution network]

Diagram showing the power distribution network with labels for V_{DD} and Gnd.
3rd “coarse and thick” metal layer added to the technology for EV4 design
Power supplied from two sides of the die via 3rd metal layer
2nd metal layer used to form power grid
90% of 3rd metal layer used for power/clock routing

Courtesy Compaq
4 Metal Layers Approach (EV5)

4th “coarse and thick” metal layer added to the technology for EV5 design

Power supplied from four sides of the die

Grid strapping done all in coarse metal

90% of 3rd and 4th metals used for power/clock routing

Courtesy Compaq
6 Metal Layer Approach – EV6

2 reference plane metal layers added to the technology for EV6 design
Solid planes dedicated to Vdd/Vss
Lowers on-chip inductance

Courtesy Compaq
Decoupling Capacitors

Decoupling capacitors are added:

- On the board (right under the supply pins)
- On the chip (under the supply straps, near large buffers)
Decoupling Capacitors

- Under the die
Pin Inductance Example

- Processor transient current is 100A in 20ps from 1V supply
- C4 bump inductance is 25pH
- How many C4 bumps do we need to get supply noise spike of less than 10%?

- With wirebond inductance of 1nH (1nH/mm) how many wirebonds are needed?
Modern Concepts: Integrated Regulators

1.7V down to 1V, 0.1-16A

[Haswell CPU]