EECS 151/251A
Fall 2018
Digital Design and Integrated Circuits

Instructor:
John Wawrzynek & Nicholas Weaver

Lecture 6
Boolean Algebra
Boolean Algebra

Set of elements B, binary operators $\{+, \cdot\}$, unary operation $\{\}'$, such that the following axioms hold:

1. B contains at least two elements a, b such that $a \neq b$.

2. Closure: a, b in B,

 $a + b$ in B, $a \cdot b$ in B, a' in B.

3. Commutative laws:

 $a + b = b + a$, $a \cdot b = b \cdot a$.

4. Identities: $0, 1$ in B

 $a + 0 = a$, $a \cdot 1 = a$.

5. Distributive laws:

 $a + (b \cdot c) = (a + b) \cdot (a + c)$, $a \cdot (b + c) = a \cdot b + a \cdot c$.

6. Complement:

 $a + a' = 1$, $a \cdot a' = 0$.

$B = \{0, 1\}$, $+$ = OR, \cdot = AND, $'$ = NOT is a valid Boolean Algebra.
Some Laws of Boolean Algebra

Duality: A dual of a Boolean expression is derived by interchanging OR and AND operations, and 0s and 1s (literals are left unchanged).

\[\{F(x_1, x_2, ..., x_n, 0, 1, +, \cdot)\}^D = \{F(x_1, x_2, ..., x_n, 1, 0, \cdot, +)\} \]

Any law that is true for an expression is also true for its dual.

Operations with 0 and 1:
\[
\begin{align*}
x + 0 &= x & x + 1 &= 1 \\
x + 1 &= 1 & x * 0 &= 0
\end{align*}
\]

Idempotent Law:
\[
\begin{align*}
x + x &= x & x * x &= x
\end{align*}
\]

Involution Law:
\[
\begin{align*}
(x')' &= x & x * x &= x
\end{align*}
\]

Laws of Complementarity:
\[
\begin{align*}
x + x' &= 1 & xx' &= 0
\end{align*}
\]

Commutative Law:
\[
\begin{align*}
x + y &= y + x & xy &= yx
\end{align*}
\]
Some Laws of Boolean Algebra (cont.)

Associative Laws:
\[(x + y) + z = x + (y + z)\]
\[x y z = x(y z)\]

Distributive Laws:
\[x (y + z) = (x y) + (x z)\]
\[x + (y z) = (x + y) (x + z)\]

“Simplification” Theorems:
\[x y + x y' = x\]
\[(x + y) (x + y') = x\]
\[x + x y = x\]
\[x (x + y) = x\]

DeMorgan's Law:
\[(x + y + z +)' = x'y'z'\]
\[(x y z)' = x' + y' + z'\]

Theorem for Multiplying and Factoring:
\[(x + y) (x' + z) = x z + x' y\]

Consensus Theorem:
\[x y + y z + x' z = (x + y) (y + z) (x' + z)\]
\[x y + x' z = (x + y) (x' + z)\]
DeMorgan's Law

\[(x + y)' = x' y'\]

Exhaustive Proof

\[
\begin{array}{ccc}
 x & y & x' y' \\
 0 & 0 & 1 \\
 0 & 1 & 1 \\
 1 & 0 & 0 \\
 1 & 1 & 0 \\
\end{array}
\]

\[(x y)' = x' + y'\]

Exhaustive Proof

\[
\begin{array}{ccc}
 x & y & x' y' \\
 0 & 0 & 1 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\]

\[(x + y)' = x' y'\]

\[
\begin{array}{ccc}
 x & y & x' y' \\
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 0 \\
\end{array}
\]

\[(x y)' = x' + y'\]

\[
\begin{array}{ccc}
 x & y & x' y' \\
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\]
Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?
Canonical Forms

- Standard form for a Boolean expression - unique algebraic expression directly from a true table (TT) description.
- Two Types:
 - Sum of Products (SOP)
 - Product of Sums (POS)
- Sum of Products (disjunctive normal form, minterm expansion). Example:

<table>
<thead>
<tr>
<th>Minterms</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>f</th>
<th>f'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a'b'c'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a'b'c'</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a'bc'</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a'bc</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ab'c'</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ab'c</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>abc'</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>abc</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

One product (and) term for each 1 in f:

- \(f = a'bc + ab'c' + ab'c + abc' + abc \)
- \(f' = a'b'c' + a'b'c + a'bc' \)

What is the cost?
Canonical Forms are usually not minimal:

Our Example:

\[f = a'bc + ab'c' + ab'c + abc' + abc \]
\[= a'bc + ab' + ab \]
\[= a'bc + a \]
\[= a + bc \]

\[f' = a'b'c' + a'b'c + a'bc' \]
\[= a'b' + a'bc' \]
\[= a' (b' + bc') \]
\[= a' (b' + c') \]
\[= a'b' + a'c' \]
Canonical Forms

- **Product of Sums** ([conjunctive normal form, maxterm expansion]).

Example:

<table>
<thead>
<tr>
<th>maxterms</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>f</th>
<th>f'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a+b+c</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a+b+c'</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a+b'c</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a+b'c'</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a'b+c</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a'b+c'</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a'b+c'</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a'b+c'</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

One sum (or) term for each 0 in f:

$$f = (a+b+c) (a+b+c') (a+b'+c)$$

$$f' = (a+b'+c') (a'+b+c) (a'+b'+c)$$

$$(a'+b'+c) (a+b+c')$$
Simplify ... algebra or K-maps

- Algebra: $f = a + bc$
- K-maps:

```
    ab
   c  00  01  11  10
  0  0  0  1  1  1
  1  0  1  1  1  1
```
Multi-level Logic
Example: reduced sum-of-products form
\[x = a \cdot d \cdot f + a \cdot e \cdot f + b \cdot d \cdot f + b \cdot e \cdot f + c \cdot d \cdot f + c \cdot e \cdot f + g \]

Implementation in 2-levels with gates:
- **cost:** 1 7-input OR, 6 3-input AND
 - \(\Rightarrow 50 \) transistors
- **delay:** 3-input OR gate delay + 7-input AND gate delay
Example: reduced sum-of-products form
\[x = adf + aef + bdf + bef + cdf + cef + g \]

Implementation in 2-levels with gates:
- **cost:** 1 7-input OR, 6 3-input AND
 - \(\Rightarrow \) 50 transistors
- **delay:** 3-input OR gate delay + 7-input AND gate delay

Factored form:
\[x = (a + b + c)(d + e)f + g \]
- **cost:** 1 3-input OR, 2 2-input OR, 1 3-input AND
 - \(\Rightarrow \) 20 transistors
- **delay:** 3-input OR + 3-input AND + 2-input OR

Footnote: NAND would be used in place of all ANDs and ORs.
Multi-level Combinational Logic

- Example: reduced sum-of-products form
 \[x = adf + aef + bdf + bef + cdf + cef + g \]

- Implementation in 2-levels with gates:
 \begin{itemize}
 \item **cost:** 1 7-input OR, 6 3-input AND
 \[\rightarrow 50 \text{ transistors} \]
 \item **delay:** 3-input OR gate delay + 7-input AND gate delay
 \end{itemize}

- Factored form:
 \[x = (a + b + c)(d + e)f + g \]
 \begin{itemize}
 \item **cost:** 1 3-input OR, 2 2-input OR, 1 3-input AND
 \[\rightarrow 20 \text{ transistors} \]
 \item **delay:** 3-input OR + 3-input AND + 2-input OR
 \end{itemize}

Which is faster?

In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay. Sometimes a tradeoff between cost and delay.

In reality: The ASIC mapping tools target cells are optimized: the tool will decide...
Another Example: \(F = abc + abd + a'c'd' + b'c'd' \)

let \(x = ab \quad y = c+d \)

\[f = xy + x'y' \]

No convenient hand methods exist for multi-level logic simplification:

a) CAD Tools use sophisticated algorithms and heuristics
 Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)
Binary decision diagrams as the base

Binary decision tree

Binary decision diagram (BDD)
NAND-NAND & NOR-NOR Networks

DeMorgan's Law Review:

\[(a + b)' = a' b'\]
\[a + b = (a' b')'\]
\[(a b)' = a' + b'\]
\[(a b) = (a' + b')'\]

push bubbles or introduce in pairs or remove pairs:

\[(x')' = x\]
NAND-NAND & NOR-NOR Networks

- Mapping from AND/OR to NAND/NAND

a)

b)

c)

d)
Multi-level Networks

Convert to NANDs:
\[F = a(b + cd) + bc' \]
Finite State Machines
Finite State Machines (FSMs)

- **FSM** circuits are a type of sequential circuit:
 - output depends on present and past inputs
 - effect of past inputs is represented by the current state

- Behavior is represented by **State Transition Diagram**:
 - traverse one edge per clock cycle.
Flip-flops form state register

number of states \leq 2^{\text{number of flip-flops}}

CL (combinational logic) calculates next state and output

Remember: The FSM follows exactly one edge per cycle.

Later we will learn how to implement in Verilog. Now we learn how to design “by hand” to the gate level.
A string of bits has “even parity” if the number of 1's in the string is even.

Design a circuit that accepts a bit-serial stream of bits, and outputs a 0 if the parity thus far is even and outputs a 1 if odd:

Next we take this example through the “formal design process”. But first, can you guess a circuit that performs this function?
Parity Counter
“State Transition Diagram”

- circuit is in one of two “states”.
- transition on each cycle with each new input, over exactly one arc (edge).
- Output depends on which state the circuit is in.
Formal Design Process (3,4)

State Transition Table:

<table>
<thead>
<tr>
<th>present state</th>
<th>OUT</th>
<th>IN</th>
<th>next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVEN</td>
<td>0</td>
<td>0</td>
<td>EVEN</td>
</tr>
<tr>
<td>EVEN</td>
<td>0</td>
<td>1</td>
<td>ODD</td>
</tr>
<tr>
<td>ODD</td>
<td>1</td>
<td>0</td>
<td>ODD</td>
</tr>
<tr>
<td>ODD</td>
<td>1</td>
<td>1</td>
<td>EVEN</td>
</tr>
</tbody>
</table>

Invent a code to represent states:

Let 0 = EVEN state, 1 = ODD state

<table>
<thead>
<tr>
<th>present state (ps)</th>
<th>OUT</th>
<th>IN</th>
<th>next state (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Derive logic equations from table (how?):

- OUT = PS
- NS = PS xor IN
Logic equations from table:

\[\text{OUT} = \text{PS} \]
\[\text{NS} = \text{PS} \oplus \text{IN} \]

- XOR gate for NS calculation
- DFF to hold present state
- no logic needed for output in this example.
Formal Design Process

Review of Design Steps:

1. Specify circuit function (English)
2. Draw state transition diagram
3. Write down symbolic state transition table
4. Write down encoded state transition table
5. Derive logic equations
6. Derive circuit diagram

Register to hold state
Combinational Logic for Next State and Outputs
FSM Design Example
Combination Lock Example

Used to allow entry to a locked room:

- 2-bit serial combination. Example 01,11:
 1. Set switches to 01, press ENTER
 2. Set switches to 11, press ENTER
 3. OPEN is asserted (OPEN=1).

If wrong code, ERROR is asserted (after second combo word entry).
Press Reset at anytime to try again.
Assume the ENTER button when pressed generates a pulse for only one clock cycle.
Symbolic State Transition Table

<table>
<thead>
<tr>
<th>RESET</th>
<th>ENTER</th>
<th>COM1</th>
<th>COM2</th>
<th>Preset State</th>
<th>Next State</th>
<th>OPEN</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>*</td>
<td>*</td>
<td>START</td>
<td>START</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>*</td>
<td>START</td>
<td>BAD1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>*</td>
<td>START</td>
<td>OK1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>*</td>
<td>*</td>
<td>OK1</td>
<td>OK1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>*</td>
<td>0</td>
<td>OK1</td>
<td>BAD2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>*</td>
<td>1</td>
<td>OK1</td>
<td>OK2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>OK2</td>
<td>OK2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>*</td>
<td>*</td>
<td>BAD1</td>
<td>BAD1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>BAD1</td>
<td>BAD2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>BAD2</td>
<td>START</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Decoder logic for checking combination (01,11):

![Decoder logic diagram](image-url)
Encoded ST Table

- **Assign states:**
 START=000, OK1=001, OK2=011
 BAD1=100, BAD2=101
- **Omit reset. Assume that primitive flip-flops has reset input.**
- **Rows not shown have don't cares in output. Correspond to invalid PS values.**

- What are the output functions for OPEN and ERROR?
In general:

\[\text{# of possible FSM states} = 2^{\text{# of Flip-flops}} \]

Example:

\[\text{state1} = 01, \text{state2} = 11, \text{state3} = 10, \text{state4} = 00 \]

However, often more than \(\log_2(\text{# of states}) \) FFs are used, to simplify logic at the cost of more FFs.

Extreme example is one-hot state encoding.
State Encoding

- One-hot encoding of states.
- One FF per state.

Why one-hot encoding?
- Simple design procedure.
 - Circuit matches state transition diagram (example next page).
 - Often can lead to simpler and faster “next state” and output logic.

Why not do this?
- Can be costly in terms of Flip-flops for FSMs with large number of states.

FPGAs are “Flip-flop rich”, therefore one-hot state machine encoding is often a good approach.
One-hot encoded FSM

- Even Parity Checker Circuit:

- In General:
 - FFs must be initialized for correct operation (only one 1)
One-hot encoded combination lock
Moore Versus Mealy Machines
All examples so far generate output based only on the present state, commonly called a “Moore Machine”:

If output functions include both present state and input then called a “Mealy Machine”:

![Diagram of FSM](image-url)
Example: Edge Detector

Bit are received one at a time (one per cycle), such as: 000111010.

Design a circuit that asserts its output for one cycle when the input bit stream changes from 0 to 1.

We'll try two different solutions.
State Transition Diagram Solution A

<table>
<thead>
<tr>
<th>IN</th>
<th>PS</th>
<th>NS</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>00</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>
Solution A, circuit derivation

Input and Output States

<table>
<thead>
<tr>
<th>IN</th>
<th>PS</th>
<th>NS</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>00</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Transition Table

- **Zero**:
 - $IN = 0$: $PS = 00$, $NS = 00$, $OUT = 0$
 - $IN = 1$: $PS = 00$, $NS = 01$, $OUT = 0$

- **Change**: $IN = 0$: $PS = 01$, $NS = 00$, $OUT = 1$
 - $IN = 1$: $PS = 01$, $NS = 11$, $OUT = 1$

- **One**: $IN = 0$: $PS = 11$, $NS = 00$, $OUT = 0$
 - $IN = 1$: $PS = 11$, $NS = 11$, $OUT = 0$

Circuit Diagram

Circuit Diagram Description

- IN connects to two flip-flops, FF.
- The output of the first flip-flop, NS_1, feeds into the second flip-flop, FF.
- The output of the second flip-flop, FF, feeds into another flip-flop, FF.
- The output of this flip-flop, PS_1, feeds into a final flip-flop, FF.
- The output of the final flip-flop, PS_0, feeds into an AND gate.
- The output of the AND gate is OUT.

Truth Tables

PS

<table>
<thead>
<tr>
<th>IN</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

$NS_1 = IN PS_0$

<table>
<thead>
<tr>
<th>IN</th>
<th>0 0 0 0 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0 -</td>
</tr>
<tr>
<td>1</td>
<td>0 1 1 1 -</td>
</tr>
</tbody>
</table>

$NS_0 = IN$

<table>
<thead>
<tr>
<th>IN</th>
<th>0</th>
<th>0 0 0 0 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 0 0 0 -</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0 1 1 1 -</td>
</tr>
</tbody>
</table>

$OUT = PS_1 PS_0$

<table>
<thead>
<tr>
<th>IN</th>
<th>0 0 1 0 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 1 0 0 -</td>
</tr>
<tr>
<td>1</td>
<td>0 1 0 0 -</td>
</tr>
</tbody>
</table>
Solution B

Output depends not only on PS but also on input, IN

<table>
<thead>
<tr>
<th>IN</th>
<th>PS</th>
<th>NS</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Let ZERO=0, ONE=1

NS = IN, OUT = IN PS'

What's the intuition about this solution?
Edge detector timing diagrams

- Solution A: output follows the clock
- Solution B: output changes with input rising edge and is asynchronous wrt the clock.
FSM Comparison

Solution A

Moore Machine
- output function only of PS
- maybe more states (why?)
- synchronous outputs
 - Input glitches not send at output
 - one cycle “delay”
 - full cycle of stable output

Solution B

Mealy Machine
- output function of both PS & input
- maybe fewer states
- asynchronous outputs
 - if input glitches, so does output
 - output immediately available
 - output may not be stable long enough to be useful (below):

If output of Mealy FSM goes through combinational logic before being registered, the CL might delay the signal and it could be missed by the clock edge.
Both machine types allow one-hot implementations.
Final Notes on Moore versus Mealy

1. A given state machine *could* have *both* Moore and Mealy style outputs. Nothing wrong with this, but you need to be aware of the timing differences between the two types.

2. The output timing behavior of the Moore machine can be achieved in a Mealy machine by “registering” the Mealy output values:
FSMs in Verilog
General FSM Design Process with Verilog Implementation

Design Steps:

1. Specify **circuit function** (English)
2. Draw **state transition diagram**
3. Write down **symbolic state transition table**
4. Assign encodings (bit patterns) to symbolic states
5. Code as Verilog behavioral description

✓ Use parameters to represent encoded states.
✓ Use separate always blocks for register assignment and CL logic block.
✓ Use case for CL block. Within each case section (state) assign all outputs and next state value based on inputs. Note: For Moore style machine make outputs dependent only on state not dependent on inputs.
Finite State Machine in Verilog

State Transition Diagram

Holds a symbol to keep track of which bubble the FSM is in.

Implementation Circuit Diagram

CL functions to determine output and next state based on input and current state.

\[
\text{out} = f(\text{in}, \text{current state})
\]

\[
\text{next state} = f(\text{in}, \text{current state})
\]
module FSM1(clk, rst, in, out);
input clk, rst;
input in;
output out;

// Defined state encoding:
parameter IDLE = 2'b00;
parameter S0 = 2'b01;
parameter S1 = 2'b10;
reg out;
reg [1:0] present_state, next_state;

// always block for state register
always @(posedge clk)
 if (rst) present_state <= IDLE;
 else present_state <= next_state;

A separate always block should be used for combination logic part of FSM. Next state and output generation. (Always blocks in a design work in parallel.)
// always block for combinational logic portion
always @(present_state or in)
case (present_state)
 // For each state define output and next
 IDLE : begin
 out = 1'b0;
 if (in == 1'b1) next_state = S0;
 else next_state = IDLE;
 end
 S0 : begin
 out = 1'b0;
 if (in == 1'b1) next_state = S1;
 else next_state = IDLE;
 end
 S1 : begin
 out = 1'b1;
 if (in == 1'b1) next_state = S1;
 else next_state = IDLE;
 end
 default: begin
 next_state = IDLE;
 out = 1'b0;
 end
endcase
endmodule

Each state becomes a case clause.

For each state define:
Output value(s)
State transition

Use “default” to cover unassigned state. Usually unconditionally transition to reset state.

Mealy or Moore?
Edge Detector Example

Mealy Machine

```verilog
always @(posedge clk)
    if (rst) ps <= ZERO;
    else ps <= ns;
always @(ps in)
    case (ps)
        ZERO: if (in) begin
            out = 1'b1;
            ns = ONE;
        end
        else begin
            out = 1'b0;
            ns = ZERO;
        end
        ONE: if (in) begin
            out = 1'b0;
            ns = ONE;
        end
        else begin
            out = 1'b0;
            ns = ZERO;
        end
        default: begin
            out = 1'b0;
            ns = default;
        end
    endcase
```

Moore Machine

```verilog
always @(posedge clk)
    if (rst) ps <= ZERO;
    else ps <= ns;
always @(ps in)
    case (ps)
        ZERO: begin
            out = 1'b0;
            if (in) ns = CHANGE;
            else ns = ZERO;
        end
        CHANGE: begin
            out = 1'b1;
            if (in) ns = ONE;
            else ns = ZERO;
        end
        ONE: begin
            out = 1'b0;
            if (in) ns = ONE;
            else ns = ZERO;
        end
        default: begin
            out = 1'b0;
            ns = default;
        end
    endcase
```
The sequential semantics of the blocking assignment allows variables to be multiply assigned within a single always block. Unexpected behavior can result from mixing these assignments in a single block. Standard rules:

i. Use blocking assignments to model combinational logic within an always block ("=").

ii. Use non-blocking assignments to implement sequential logic ("<=").

iii. Do not mix blocking and non-blocking assignments in the same always block.

iv. Do not make assignments to the same variable from more than one always block.
always @(present_state or in)
case (present_state)
 IDLE : begin
 out = 1'b0;
 if (in == 1'b1) next_state = S0;
 else next_state = IDLE;
 end

 S0 : begin
 out = 1'b0;
 if (in == 1'b1) next_state = S1;
 else next_state = IDLE;
 end

 S1 : begin
 out = 1'b1;
 if (in == 1'b1) next_state = S1;
 else next_state = IDLE;
 end

 default: begin
 next_state = IDLE;
 out = 1'b0;
 end
endcase
endmodule
always @* begin
 next_state = IDLE;
 out = 1'b0;
 case (state)
 IDLE : if (in == 1'b1) next_state = S0;
 S0 : if (in == 1'b1) next_state = S1;
 S1 : begin
 out = 1'b1;
 if (in == 1'b1) next_state = S1;
 end
 default: ;
 endcase
end
Endmodule

* for sensitivity list

Normal values: used unless specified below.

Within case only need to specify exceptions to the normal values.

Note: The use of “blocking assignments” allow signal values to be “rewritten”, simplifying the specification.
Some final warnings
Combinational logic always blocks

Make sure all signals assigned in a combinational always block are explicitly assigned values every time that the always block executes. Otherwise latches will be generated to hold the last value for the signals not assigned values.

Sel case value 2’d2 omitted.

Out is not updated when select line has 2’d2.

Latch is added by tool to hold the last value of out under this condition.

Similar problem with if-else statements.

module mux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;
always @(sel or a or b or c or d)
begin
 case (sel)
 2’d0: out = a;
 2’d1: out = b;
 2’d3: out = d;
 default: out = 0;
 endcase
end
endmodule
To avoid synthesizing a latch in this case, add the missing select line:

\[2'd2: \text{out} = c; \]

Or, in general, use the “default” case:

\[\text{default: out} = \text{foo}; \]

If you don’t care about the assignment in a case (for instance you know that it will never come up) then you can assign the value “x” to the variable. Example:

\[\text{default: out} = 1'bx; \]

The x is treated as a “don’t care” for synthesis and will simplify the logic.

Be careful when assigning x (don’t care). If this case were to come up, then the synthesized circuit and simulation may differ.
Incomplete Triggers

Leaving out an input trigger usually results in latch generation for the missing trigger.

```verilog
module and_gate (out, in1, in2);
    input  in1, in2;
    output out;
    reg    out;

    always @(in1) begin
        out = in1 & in2;
    end
endmodule
```

in2 not in always sensitivity list.

A latched version of in2 is synthesized and used as input to the and-gate, so that the and-gate output is not always sensitive to in2.

Easy way to avoid incomplete triggers for combinational logic is with: `always @*`
Intro to Logic
Synthesis
Hierarchically define structure and/or behavior of circuit.

HDL Specification

Simulation
Functional verification.

Synthesis
Maps specification to resources of implementation platform (FPGA or ASIC).

Note: This is not the entire story. Other tools are often used to analyze HDL specifications and synthesis results. More on this later.
Verilog and VHDL started out as simulation languages, but quickly people wrote programs to automatically convert Verilog code into low-level circuit descriptions (netlists).

- Synthesis converts Verilog (or other HDL) descriptions to implementation technology specific primitives:
 - For FPGAs: LUTs, flip-flops, and RAM blocks
 - For ASICs: standard cell gate and flip-flop libraries, and memory blocks.
Why Logic Synthesis?

1. Automatically manages many details of the design process:
 ⇒ Fewer bugs
 ⇒ Improved productivity

2. Abstracts the design data (HDL description) from any particular implementation technology.
 - Designs can be re-synthesized targeting different chip technologies. Ex: first implement in FPGA then later in ASIC.

3. In some cases, leads to a more optimal design than could be achieved by manual means (ex: logic optimization)

Why Not Logic Synthesis?

1. May lead to non-optimal designs in some cases.

2. Often less transparent than desired: Good performance requires basically modeling the compiler in your head…
Main Logic Synthesis Steps

Parsing and Syntax Check
Load in HDL file, run macro preprocessor for `define, `include, etc..

Design Elaboration
Compute parameter expressions, process generates, create instances, connect ports.

Inference and Library Substitution
Recognize and insert special blocks (memory, flip-flops, arithmetic structures, ...)

Logic Expansion
Expand combinational logic to primitive Boolean representation.

Logic Optimization
Apply Boolean algebra and heuristics to simplify and optimize under constraints.

Map, Place & Route
CL and state elements to LUTs (FPGA) or Technology Library (ASCI) , assign physical locations, route connections.
Operators and Synthesis

- Logical operators map into primitive logic gates.
- Arithmetic operators map into adders, subtractors, ...
 - Unsigned 2s complement
 - Model carry: target is one-bit wider than source
 - Watch out for *, %, and /
- Relational operators generate comparators.
- Shifts by constant amount are just wire connections
 - No logic involved
- Variable shift amounts, a whole different story --- shifter
- Conditional expression generates logic or MUX

Y = \sim X \ll 2

Y[5]
Y[4]
Y[3]
Y[2]
Y[1]
Y[0]
Simple Synthesis Example

module foo (A, B, s0, s1, F);
 input [3:0] A;
 input [3:0] B;
 input s0, s1;
 output [3:0] F;
 reg F;
 always @ (*)
 if (!s0 && s1 || s0) F=A; else F=B;
endmodule

Should expand if-else into 4-bit wide multiplexor and optimize the control logic and ultimately to a single LUT on an FPGA:
Nested IF-ELSE might lead to “priority logic”

Example: 4-to-2 encoder

```verilog
always @(x)
begin : encode
  if (x == 4'b0001) y = 2'b00;
  else if (x == 4'b0010) y = 2'b01;
  else if (x == 4'b0100) y = 2'b10;
  else if (x == 4'b1000) y = 2'b11;
  else y = 2'bxx;
end
```

This style of cascaded logic may adversely affect the performance of the circuit.
To avoid “priority logic” use the case construct:

```verilog
classic always @(x)
begin : encode
  case (x)
  4'b0001: y = 2'b00;
  4'b0010: y = 2'b01;
  4'b0100: y = 2'b10;
  4'b1000: y = 2'b11;
  default: y = 2'bxx;
  endcase
end
```

All cases are matched in parallel.
Encoder Example (cont.)

This circuit would be simplified during synthesis to take advantage of constant values as follows and other Boolean equalities:

A similar simplification would be applied to the if-else version also.