Announcements...

- Midterm, in the class slot, February 15th... ;(
The sequential semantics of the blocking assignment allows variables to be multiply assigned within a single always block. Unexpected behavior can result from mixing these assignments in a single block. Standard rules:

i. Use blocking assignments to model combinational logic within an always block ("=”).

ii. Use non-blocking assignments to implement sequential logic ("<=”).

iii. Do not mix blocking and non-blocking assignments in the same always block.

iv. Do not make assignments to the same variable from more than one always block.
Combinational logic always blocks

Make sure all signals assigned in a combinational always block are explicitly assigned values every time that the always block executes. Otherwise latches will be generated to hold the last value for the signals not assigned values.

Sel case value 2’d2 omitted.

Out is not updated when select line has 2’d2.

Latch is added by tool to hold the last value of out under this condition.

Similar problem with if-else statements.

```verilog
module mux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;
always @(sel or a or b or c or d)
begin
  case (sel)
    2'd0: out = a;
    2'd1: out = b;
    2'd3: out = d;
  endcase
end
endmodule
```
To avoid synthesizing a latch in this case, add the missing select line:

\[
2'd2: \text{ out } = c;
\]

Or, in general, use the “default” case:

\[
\text{default: out } = \text{ foo};
\]

If you don’t care about the assignment in a case (for instance you know that it will never come up) then you can assign the value “x” to the variable. Example:

\[
\text{default: out } = 1'b\text{x};
\]

The x is treated as a “don’t care” for synthesis and will simplify the logic.

Be careful when assigning x (don’t care). If this case were to come up, then the synthesized circuit and simulation may differ.
Special Values: x and z...

- `1'b0x` == single bit of "don't care" for synthesis
 - Result can actually become anything... 0... 1... bouncing up and down, etc etc etc...
 - It gives freedom to the compiler/simulator to do whatever it wants
 - Simulator: Usually process it as an explicit X output
 - Compiler: Optimizes it to produce either a 0, 1, or Z depending on everything else in the circuit

- `1'b0z` == "High impedance"
 - Result is "disconnect": **nothing** is driving this output
 - Needed to implement connections that can be both input & output
FSM Comparison

Solution A
Moore Machine
- output function only of PS
- maybe more states (why?)
- synchronous outputs
 - Input glitches not send at output
 - one cycle “delay”
 - full cycle of stable output

Solution B
Mealy Machine
- output function of both PS & input
- maybe fewer states
- asynchronous outputs
 - if input glitches, so does output
 - output immediately available
 - output may not be stable long enough to be useful (below):

If output of Mealy FSM goes through combinational logic before being registered, the CL might delay the signal and it could be missed by the clock edge.
General FSM Design Process with Verilog Implementation

Design Steps:
1. Specify **circuit function** (English)
2. Draw **state transition diagram**
3. Write down **symbolic state transition table**
4. Assign encodings (bit patterns) to symbolic states
5. Code as Verilog behavioral description.. (Or just skip from 1 to 4+5...)

✓ Use parameters to represent encoded states.
✓ Use separate always blocks for register assignment and CL logic block.
✓ Use case for CL block. Within each case section (state) assign all outputs and next state value based on inputs. Note: For Moore style machine make outputs dependent only on state not dependent on inputs.
Finite State Machine in Verilog

State Transition Diagram

Holds a symbol to keep track of which bubble the FSM is in.

Implementation Circuit Diagram

CL functions to determine output and next state based on input and current state.

\begin{align*}
\text{out} &= f(\text{in}, \text{current state}) \\
\text{next state} &= f(\text{in}, \text{current state})
\end{align*}
module FSM1(clk, rst, in, out);
input clk, rst;
input in;
output out;

// Defined state encoding:
parameter IDLE = 2'b00;
parameter S0 = 2'b01;
parameter S1 = 2'b10;
reg out;
reg [1:0] present_state, next_state;

// always block for state register
always @(posedge clk)
 if (rst) present_state <= IDLE;
 else present_state <= next_state;

A separate always block should be used for combination logic part of FSM. Next state and output generation. (Always blocks in a design work in parallel.)
// always block for combinational logic portion
always @(present_state or in)
case (present_state)
 // For each state def output and next
 IDLE : begin
 out = 1'b0;
 if (in == 1'b1) next_state = S0;
 else next_state = IDLE;
 end
 S0 : begin
 out = 1'b0;
 if (in == 1'b1) next_state = S1;
 else next_state = IDLE;
 end
 S1 : begin
 out = 1'b1;
 if (in == 1'b1) next_state = S1;
 else next_state = IDLE;
 end
 default: begin
 next_state = IDLE;
 out = 1'b0;
 end
endcase
endmodule

Mealy or Moore?

Each state becomes a case clause.

For each state define:
Output value(s)
State transition

Use “default” to cover unassigned state. Usually unconditionally transition to reset state.
Edge Detector Example

Mealy Machine

```verilog
always @(posedge clk)
  if (rst) ps <= ZERO;
  else ps <= ns;
always @(ps in)
  case (ps)
    ZERO: if (in) begin
      out = 1'b1;
      ns = ONE;
    end
    else begin
      out = 1'b0;
      ns = ZERO;
    end
    ONE: if (in) begin
      out = 1'b0;
      ns = ONE;
    end
    else begin
      out = 1'b0;
      ns = ZERO;
    end
    default: begin
      out = 1'bx;
      ns = default;
    end
  endcase
```

Moore Machine

```verilog
always @(posedge clk)
  if (rst) ps <= ZERO;
  else ps <= ns;
always @(ps in)
  case (ps)
    ZERO: begin
      out = 1'b0;
      if (in) ns = CHANGE;
      else ns = ZERO;
    end
    CHANGE: begin
      out = 1'b1;
      if (in) ns = ONE;
      else ns = ZERO;
    end
    ONE: begin
      out = 1'b0;
      if (in) ns = ONE;
      else ns = ZERO;
    end
    default: begin
      out = 1'bx;
      ns = default;
    end
  endcase
```
always @(present_state or in)
case (present_state)
 IDLE : begin
 out = 1'b0;
 if (in == 1'b1) next_state = S0;
 else next_state = IDLE;
 end
 S0 : begin
 out = 1'b0;
 if (in == 1'b1) next_state = S1;
 else next_state = IDLE;
 end
 S1 : begin
 out = 1'b1;
 if (in == 1'b1) next_state = S1;
 else next_state = IDLE;
 end
 default: begin
 next_state = IDLE;
 out = 1'b0;
 end
endcase
endmodule
FSM CL block rewritten

```verilog
always @*
begin
  next_state = IDLE;
  out = 1'b0;
  case (state)
  IDLE : if (in == 1'b1) next_state = S0;
  S0  : if (in == 1'b1) next_state = S1;
  S1  : begin
      out = 1'b1;
      if (in == 1'b1) next_state = S1;
    end
  default: ;
  endcase
end
Endmodule
```

* for sensitivity list

Normal values: used unless specified below.

Within case only need to specify exceptions to the normal values.

Note: The use of “blocking assignments” allow signal values to be “rewritten”, simplifying the specification.
Incomplete Triggers

Leaving out an input trigger usually results in latch generation for the missing trigger.

```verilog
module and_gate (out, in1, in2);
    input  in1, in2;
    output out;
    reg   out;
    always @(in1) begin
        out = in1 & in2;
    end
endmodule
```

in2 not in always sensitivity list.

A latched version of in2 is synthesized and used as input to the and-gate, so that the and-gate output is not always sensitive to in2.

Easy way to avoid incomplete triggers for combinational logic is with: `always *@`
Intro to Logic
Synthesis
Hierarchically define structure and/or behavior of circuit.

HDL Specification

- **Simulation**
 - Functional verification.
- **Synthesis**
 - Maps specification to resources of implementation platform (FPGA or ASIC).

Note: This is not the entire story. Other tools are often used to analyze HDL specifications and synthesis results. More on this later.
Logic Synthesis

Verilog and VHDL started out as simulation languages, but quickly people wrote programs to automatically convert Verilog code into low-level circuit descriptions (netlists).

- Synthesis converts Verilog (or other HDL) descriptions to implementation technology specific primitives:
 - For FPGAs: LUTs, flip-flops, and RAM blocks
 - For ASICs: standard cell gate and flip-flop libraries, and memory blocks.
Why Logic Synthesis?

1. Automatically manages many details of the design process:
 ⇒ Fewer bugs
 ⇒ Improved productivity

2. Abstracts the design data (HDL description) from any particular implementation technology.
 - Designs can be re-synthesized targeting different chip technologies. Ex: first implement in FPGA then later in ASIC.

3. In some cases, leads to a more optimal design than could be achieved by manual means (ex: logic optimization)

Why Not Logic Synthesis?

1. May lead to non-optimal designs in some cases.
2. Often less transparent than desired: Good performance requires basically modeling the compiler in your head…
Main Logic Synthesis Steps

Parsing and Syntax Check
- Load in HDL file, run macro preprocessor for `define, `include, etc..

Design Elaboration
- Compute parameter expressions, process generates, create instances, connect ports.

Inference and Library Substitution
- Recognize and insert special blocks (memory, flip-flops, arithmetic structures, ...)

Logic Expansion
- Expand combinational logic to primitive Boolean representation.

Logic Optimization
- Apply Boolean algebra and heuristics to simplify and optimize under constraints.

Map, Place & Route
- CL and state elements to LUTs (FPGA) or Technology Library (ASCI), assign physical locations, route connections.

foo.v

foo.ncd, foo.gates
Operators and Synthesis

- Logical operators map into primitive logic gates.
- Arithmetic operators map into adders, subtractors, ...
 - Unsigned 2s complement
 - Model carry: target is one-bit wider than source
 - Watch out for *, %, and /
- Relational operators generate comparators.
- Shifts by constant amount are just wire connections
 - No logic involved
- Variable shift amounts, a whole different story --- shifters are expensive!
- Conditional expression generates logic or MUX

\[
Y = \neg X << 2
\]
module foo (A, B, s0, s1, F);
 input [3:0] A;
 input [3:0] B;
 input s0, s1;
 output [3:0] F;
 reg F;
 always @ (*)
 if (!s0 && s1 || s0) F=A; else F=B;
endmodule

Should expand if-else into 4-bit wide multiplexor and optimize the control logic and ultimately to 4 4-LUT on an FPGA:
Encoder Example

Nested IF-ELSE might lead to “priority logic”

Example: 4-to-2 encoder

always @(x)
begin : encode
if (x == 4'b0001) y = 2'b00;
else if (x == 4'b0010) y = 2'b01;
else if (x == 4'b0100) y = 2'b10;
else if (x == 4'b1000) y = 2'b11;
else y = 2'bxx;
end

This style of cascaded logic may adversely affect the performance of the circuit.
Encoder Example (cont.)

To avoid “priority logic” use the case construct:

```verbatim
always @(x)
begin : encode
  case (x)
    4'b0001: y = 2'b00;
    4'b0010: y = 2'b01;
    4'b0100: y = 2'b10;
    4'b1000: y = 2'b11;
    default: y = 2'bxx;
  endcase
end
```

All cases are matched in parallel.
A similar simplification would be applied to the if-else version also.
More On Karnaugh Maps

- Realize I should have covered this in more detail...
 - So let's snag some older slides...
Algorithmic Two-level Logic Simplification

Key tool: The Uniting Theorem:

\[
xy' + xy = x(y' + y) = x(1) = x
\]

<table>
<thead>
<tr>
<th>(ab)</th>
<th>(f)</th>
<th>(f = ab' + ab = a(b' + b) = a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>b values change within the on-set rows</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>a values don’t change</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>b is eliminated, a remains</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(ab)</th>
<th>(g)</th>
<th>(g = a'b' + ab' = (a'+a)b' = b')</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1</td>
<td>b values stay the same</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>a values changes</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>b' remains, a is eliminated</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Karnaugh Map Method

- K-map is an alternative method of representing the TT and to help visualize the adjacencies.

Note: “gray code” labeling.
Karnaugh Map Method

- Adjacent groups of 1’s represent product terms

f = a

g = b'

\text{cout} = ab + bc + ac

f = a
K-map Simplification

1. Draw K-map of the appropriate number of variables (between 2 and 6)
2. Fill in map with function values from truth table.
3. Form groups of 1’s.
 - Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, ..., 2x2, 2x4, ...)
 - Form as large as possible groups and as few groups as possible.
 - Groups can overlap (this helps make larger groups)
 - Remember K-map is periodical in all dimensions (groups can cross over edges of map and continue on other side)

4. For each group write a product term.
 - the term includes the “constant” variables (use the uncomplemented variable for a constant 1 and complemented variable for constant 0)

5. Form Boolean expression as sum-of-products.
K-maps (cont.)

Circuit 1

<table>
<thead>
<tr>
<th>ab</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[f = b'c' + ac \]

Circuit 2

<table>
<thead>
<tr>
<th>ab</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>cd</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[f = c + a'bd + b'd' \]

(bigger groups are better)
Product-of-Sums Version

1. Form groups of 0’s instead of 1’s.
2. For each group write a sum term.
 - the term includes the “constant” variables (use the uncomplemented variable for a constant 0 and complemented variable for constant 1)
3. Form Boolean expression as product-of-sums.

\[
\begin{array}{cccc}
ab \\
cd & 00 & 01 & 11 & 10 \\
00 & 1 & 0 & 0 & 1 \\
01 & 0 & 1 & 0 & 0 \\
11 & 1 & 1 & 1 & 1 \\
10 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[f = (b' + c + d)(a' + c + d')(b + c + d')\]
BCD incrementer example

Binary Coded Decimal

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

{a,b,c,d} +1
4
{w,x,y,z}
BCD Incrementer Example

- Note one map for each output variable.
- Function includes “don’t cares” (shown as “-” in the table).
 - These correspond to places in the function where we don’t care about its value, because we don’t expect some particular input patterns.
 - We are free to assign either 0 or 1 to each don’t care in the function, as a means to increase group sizes.
- In general, you might choose to write product-of-sums or sum-of-products according to which one leads to a simpler expression.
BCD incrementer example

<table>
<thead>
<tr>
<th></th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>cd</td>
<td>ab</td>
<td></td>
<td>ab</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>00 01 11 10</td>
<td>00 01 11 10</td>
<td>00 01 11 10</td>
<td>00 01 11 10</td>
</tr>
<tr>
<td>00</td>
<td>0 0 0 1</td>
<td>0 1 1 0</td>
<td>0 0 0 0</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>01</td>
<td>0 0 - 0</td>
<td>0 1 - 0</td>
<td>1 1 - 0</td>
<td>0 0 - 0</td>
</tr>
<tr>
<td>11</td>
<td>0 1 - -</td>
<td>1 0 - -</td>
<td>0 0 - -</td>
<td>0 0 - -</td>
</tr>
<tr>
<td>10</td>
<td>0 0 - -</td>
<td>0 1 - -</td>
<td>1 1 - -</td>
<td>1 1 - -</td>
</tr>
</tbody>
</table>

- \(w = \)
- \(x = \)
- \(y = \)
- \(z = \)
Higher Dimensional K-maps
Digital abstraction
Bridging the digital and the analog worlds

- How to represent 0’s and 1’s in a world that is analog?
Circuit needs to works despite “analog” noise
- Digital gates can and must reject noise
- This is actually how digital systems are defined

Digital system is one where:
- Discrete values mapped to analog levels and back
- All the elements (gates) can reject noise
 - For “small” amounts of noise, output noise is less than input noise
- Thus, for sufficiently “small” noise, the system acts as if it was noiseless
- This is called regeneration
Noise?
Noise Rejection and the Voltage Transfer Characteristic

\[V_{\text{out}} \]

\[V_{\text{in}} \]

\[V_{\text{out}} \]
To see if a gate rejects noise
- Look at its DC voltage transfer characteristic (VTC)
- See what happens when input is not exactly 1 or 0

Ideal digital gate:
- Noise needs to be larger than $V_{DD}/2$ to have any effect on gate output
Realistic Voltage Transfer Characteristic

Definitions

\[V_{OH} = f(V_{OL}) \]
\[V_{OL} = f(V_{OH}) \]
\[V_M = f(V_M) \]

Switching Threshold

Nominal Voltage Levels
Voltage Mapping

“1”

\[V_{OH} \]

\[V_{IH} \]

Undefined Region

“0”

\[V_{IL} \]

\[V_{OL} \]

Slope = -1

\[V_{out} \]

\[V_{OH} \]

\[V_{OL} \]

V_{in}

Region
Definition of Noise Margins

Noise margin high:
\[NM_H = V_{OH} - V_{IH} \]

Noise margin low:
\[NM_L = V_{IL} - V_{OL} \]

Gate Output (Stage M)

Gate Input (Stage M+1)