Administration

- First Midterm Thursday

- *Decided on closed book (sorry), but will give you extra time. We will make an exam that is expected to take 90 minutes, but will give you 3 hours.*
 - 5-8PM
 - 405 Soda
 - Material: Everything up to slide 35 of Thursdays lecture (Lecture 8) – that is, CMOS logic is included.
Static Complementary CMOS

V\text{DD}

\begin{align*}
\text{PUN} & \quad \text{Inverting switches} \\
F(\text{In}_1, \text{In}_2, \ldots, \text{In}_N) \\
\text{PDN} & \quad \text{Non-Inverting switches}
\end{align*}

PUN and PDN are dual logic networks
PUN and PDN functions are complementary

- Full rail-to-rail swing
- Symmetrical VTC
- No (...) static power dissipation
- Direct path current during switching
Switch (Transmission Gate Logic)

Static:
Output always defined by GND or VDD, never both

Network of switches

In_1
In_2
In_3
In_4

No connections to GND or VDD

F
Tri-state Buffers

Tri-state Buffer:

<table>
<thead>
<tr>
<th>OE</th>
<th>N</th>
<th>CUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

“high impedance” (output disconnected)

Variations:

Inverting buffer

Inverted enable

transmission gate useful in implementation
Tri-state Buffers

Tri-state buffers enable “bidirectional” connections.

Tri-state buffers are used when multiple circuits all connect to a common wire. Only one circuit at a time is allowed to drive the bus. All others “disconnect” their outputs, but can “listen”.

Tri-state Based Multiplexor

If $s=1$ then $c=a$

Transistor Circuit for inverting multiplexor:
Latches and Flip-flops

Positive Level-sensitive \textit{latch}:

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{latch_diagram}
\end{figure}

Positive Edge-triggered \textit{flip-flop} built from two level-sensitive latches:

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{flip-flop_diagram}
\end{figure}

\textbf{Latch Implementation}:

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{Latch_Implementation_diagram}
\end{figure}
Digital abstraction
Noise and Digital Systems

- Circuit needs to works despite “analog” noise
 - Digital gates can and must reject noise
 - This is actually how digital systems are defined

- Digital system is one where:
 - Discrete values mapped to analog levels and back
 - Elements (gates) can reject noise
 - For “small” amounts of noise, output noise is less than input noise
 - Thus, for sufficiently “small” noise, the system acts as if it was noiseless
 - This is called regeneration
Bridging the digital and the analog worlds

- How to represent 0’s and 1’s in a world that is analog?

The Static Definition

- **Logic 0:** $V_{\text{MIN}} \leq V \leq V_{\text{OL}}$
- **Logic 1:** $V_{\text{OH}} \leq V \leq V_{\text{MAX}}$
- **Undefined logic value:** $V_{\text{OL}} \leq V \leq V_{\text{OII}}$
Ideal Inverter

Circuit representation and ideal transfer function:

Define *switching point* or *logic threshold*:

- \(V_M \equiv \text{input voltage for which } V_{\text{OUT}} = V_{\text{IN}} \)
 - For \(0 \leq V_{\text{IN}} < V_M \) \(\Rightarrow V_{\text{OUT}} = V^+ \)
 - For \(V_M < V_{\text{IN}} \leq V^+ \) \(\Rightarrow V_{\text{OUT}} = 0 \)

Ideal inverter returns well defined logical outputs (0 or \(V^+ \)) even in the presence of considerable noise in \(V_{\text{IN}} \) (from voltage spikes, crosstalk, etc.) \(\Rightarrow \) signal is *regenerated*!
“Real Inverter”

- **Logic 0:**
 - \(V_{\text{MIN}} \) = output voltage for which \(V_{\text{IN}} = V^+ \)
 - \(V_{\text{OL}} \) = smallest output voltage where slope = -1

- **Logic 1:**
 - \(V_{\text{OH}} \) = largest output voltage where slope = -1
 - \(V_{\text{MAX}} \) = output voltage for which \(V_{\text{IN}} = 0 \)
If range of output values V_{OL} to V_{OH} is wider than the range of input values V_{IL} to V_{IH}, then the inverter exhibits some noise immunity. (|Voltage gain| > 1)

Quantify this through noise margins.
Definition of Noise Margins

Noise margin high: \(NM_H = V_{OH} - V_{IH} \)

Noise margin low: \(NM_L = V_{IL} - V_{OL} \)
Simulated Inverter VTC (Spice)

- $V_{OH} =$
- $V_{OL} =$
- $V_{IL} =$
- $V_{IH} =$
- $N_{MH} =$
- $N_{ML} =$
- $V_M =$
Transient properties
The Switch – Dynamic Model

\[|V_{GS}| \geq |V_T| \]
The Switch – Dynamic Model (Simplified)

\[|V_{GS}| \geq |V_T| \]
The Switch Inverter: Transient Response

\[V(t) = V_0 e^{-t/RC} \]

\[t_{1/2} = \ln(2) \times RC \]

\[t_{pHL} = f(R_{on}C_L) = 0.69 R_n C_L \]

(a) Low-to-high

(b) High-to-low
Switch Sizing

What happens if we make a switch W times larger (wider)

$$|V_{GS}| \geq |V_T|$$

C_{GW}

C_{SW}

R_{on}/W
Switch Parasitic Model

The pull-down switch (NMOS)

Minimum-size switch

Sizing the transistor (factor W)

We assume transistors of minimal length (or at least constant length). R’s and C’s in units of per unit width.
PMOS Sizing

The PMOS challenge:

For the same voltages, it provides less current (approximately 2 times less)
Switch Parasitic Model

The pull-up switch (PMOS)

Minimum-size switch

Sized for symmetry

General sizing
Inverter Parasitic Model

\[C_{in} = 3WC_G \]

\[C_{int} = 3WC_D = 3W\gamma C_G \]

Drain and gate capacitance of transistor are directly related by process \((\gamma \approx 1)\)

\[C_D = \gamma C_G \]

\[t_p = 0.69\left(\frac{R_N}{W}\right)(3W\gamma C_G) = 0.69(3\gamma)R_NC_G \]

Intrinsic delay of inverter independent of size
Inverter with Load Capacitance

\[V_{in} = 3WC_G \]

\[C_{int} = \frac{3W\gamma C_G}{R_N} \]

\[V_{out} = C_L \]

\[t_p = 0.69 \left(\frac{R_N}{W} \right) (C_{int} + C_L) \]

\[= 0.69 \left(\frac{R_N}{W} \right) (3W\gamma C_G + C_L) \]

\[= 0.69(3C_G R_N)(\gamma + \frac{C_L}{C_{in}}) \]

\[= t_{inv}(\gamma + \frac{C_L}{C_{in}}) = t_0(\gamma + f) \]

\[f = \text{fanout} = \text{ratio between load and input capacitance of gate} \]
Inverter Delay Model

\[t_p = t_{inv}(\gamma + f) \]

- \(t_{inv} \): Technology constant
 - Can be dropped from expression
 - Delay unit-less variable (expressed in unit delays)

Question: how does transistor sizing (W) impact delay?
Inverter Delay Optimization
Inverter Chain

- For some given C_L:
 - How many stages are needed to minimize delay?
 - How to size the inverters?
- Anyone want to guess the solution?
Careful about Optimization Problems

- Get fastest delay if build one **very** big inverter
 - So big that delay is set only by self-loading

- Likely not the problem you’re interested in
 - Someone has to drive this inverter…
Engineering Optimization Problems in General

- Need to have a set of constraints
- Constraints key to:
 - Making the result useful
 - Making the problem have a ‘clean’ solution

- For sizing problem:
 - Need to constrain size of first inverter
Delay Optimization Problem #1

- You are given:
 - A fixed number of inverters
 - The size of the first inverter
 - The size of the load that needs to be driven

- Your goal:
 - Minimize the delay of the inverter chain

- Need model for inverter delay vs. size
Apply to Inverter Chain

$$t_p = t_{p1} + t_{p2} + \ldots + t_{pN}$$

$$t_{pj} = t_{inv} \left(\gamma + \frac{C_{in,j+1}}{C_{in,j}} \right)$$

$$t_p = \sum_{j=1}^{N} t_{p,j} = t_{inv} \sum_{i=1}^{N} \left(\gamma + \frac{C_{in,j+1}}{C_{in,j}} \right), \quad C_{in,N+1} = C_L$$
Delay equation has $N-1$ unknowns, $C_{in,2} \ldots C_{in,N}$

To minimize the delay, find $N-1$ partial derivatives:

\[t_p = \ldots + t_{inv} \frac{C_{in,j}}{C_{in,j-1}} + t_{inv} \frac{C_{in,j+1}}{C_{in,j}} + \ldots \]

\[\frac{dt_p}{dC_{in,j}} = t_{inv} \frac{1}{C_{in,j-1}} - t_{inv} \frac{C_{in,j+1}}{C_{in,j}^2} = 0 \]
Result: every stage has equal fanout (f):

\[
\frac{C_{in,j}}{C_{in,j-1}} = \frac{C_{in,j+1}}{C_{in,j}}
\]

Size of each stage is geometric mean of two neighbors:

\[
C_{in,j} = \sqrt{C_{in,j-1}C_{in,j+1}}
\]

Equal fanout \(\rightarrow\) every stage will have same delay
When each stage has same fanout f:

$$f^N = F = \frac{C_L}{C_{in,1}}$$

Fanout of each stage:

$$f = \sqrt[N]{F}$$

Minimum path delay:

$$t_p = N t_{inv} \left(\gamma + \sqrt[N]{F} \right)$$
Example

\[C_L = 8 \ C_1 \]

\(C_L/C_1 \) has to be evenly distributed across \(N = 3 \) stages:
Delay Optimization Problem #2

- You are given:
 - The size of the first inverter
 - The size of the load that needs to be driven
- Your goal:
 - Minimize delay by finding optimal number and sizes of gates
- So, need to find N that minimizes:

$$t_p = N t_{inv} \left(\gamma + \sqrt[4]{\frac{C_L}{C_{in}}} \right)$$
Untangling the Optimization Problem

- Rewrite \(N \) in terms of fanout/stage \(f \):

\[
N = \frac{\ln \left(\frac{C_L}{C_{in}} \right)}{\ln f}
\]

\[
t_p = N t_{inv} \left(\left(\frac{C_L}{C_{in}} \right)^{1/N} + \gamma \right) = t_{inv} \ln \left(\frac{C_L}{C_{in}} \right) \left(\frac{f + \gamma}{\ln f} \right)
\]

\[
\frac{\partial t_p}{\partial f} = t_{inv} \ln \left(\frac{C_L}{C_{in}} \right) \frac{\ln f - 1 - \gamma / f}{\ln^2 f} = 0
\]

\[
f = \exp \left(1 + \gamma / f \right)
\]

(no explicit solution)

For \(\gamma = 0, f = e, N = \ln \left(\frac{C_L}{C_{in}} \right) \)
Optimum Effective Fanout f

- Optimum f for given process defined by γ

$$ f = \exp(1 + \gamma / f) $$

γ-axis

For $\gamma = 1$

$$ f_{opt} = 3.6 $$
In Practice: Plot of Total Delay

- Why the shape?
- Curves very flat for $f > 2$
 - Simplest/most common choice: $f = 4$

[Hodges, p.281]
Normalized Delay As a Function of F

\[t_p = N t_{inv} \left(\gamma + \frac{N}{\sqrt{F}} \right), \quad F = \frac{C_L}{C_{in}} \]

<table>
<thead>
<tr>
<th></th>
<th>Unbuffered</th>
<th>Two Stage</th>
<th>Inverter Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11</td>
<td>8.3</td>
<td>8.3</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>22</td>
<td>16.5</td>
</tr>
<tr>
<td>1000</td>
<td>1001</td>
<td>65</td>
<td>24.8</td>
</tr>
<tr>
<td>10,000</td>
<td>10,001</td>
<td>202</td>
<td>33.1</td>
</tr>
</tbody>
</table>

(\(\gamma = 1\))

[Rabaey: page 210]
Buffer Design

<table>
<thead>
<tr>
<th>(N)</th>
<th>(f)</th>
<th>(t_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Logical Effort
Question #1

How to best combine logic and drive for a big capacitive load?
Question #2

- All of these are “decoders”
 - Which one is “best”?
Method to answer both of these questions

- Extension of buffer sizing problem
- Logical effort
Complex Gate Sizing
Complex Gate Sizing: NAND-2 Example

- \(C_{gnand} = 4C_G = \left(\frac{4}{3}\right)C_{ginv}\)
- \(C_{dnand} = 6C_D = 6\gamma C_G = 2\gamma C_{ginv}\)
- \(f = C_L/C_{gnand} = \left(\frac{3}{4}\right)C_L/C_{ginv}\)

\[
t_{pNAND} = kR_N(C_{dnand} + C_L) = kR_N(2\gamma C_{ginv} + C_L) = kR_N C_{ginv} \left(2\gamma + C_L/C_{ginv}\right) = t_{inv} \left(2\gamma + \left(\frac{4}{3}\right)f\right)
\]
Logical Effort

- Defines ease of gate to drive external capacitance
- Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates
- Logical effort LE is defined as:
 - \((R_{eq,\text{gate}}C_{in,\text{gate}})/(R_{eq,\text{inv}}C_{in,\text{inv}})\)
 - Easiest way to calculate (usually):
 - Size gate to deliver same current as an inverter, take ratio of gate input capacitance to inverter capacitance
- LE increases with gate complexity
Logical Effort

$$t_{pgate} = t_{inv} (p + LEf)$$

Measure everything in units of t_{inv} (divide by t_{inv}):

p – intrinsic delay - gate parameter $\neq f(W)$

LE – logical effort – gate parameter $\neq f(W)$

f – electrical fanout $= \frac{C_L}{C_{in}} = f(W)$

Normalize everything to an inverter:

$LE_{inv} = 1$, $p_{inv} = \gamma$
Delay of a Logic Gate

Gate delay:

\[\text{Delay} = EF + p \] (measured in units of \(t_{inv} \))

- effective fanout
- intrinsic delay

Effective fanout:

\[EF = LE \cdot f \]

- logical effort
- electrical fanout = \(C_L/C_{in} \)

Logical effort is a function of topology, independent of sizing
Effective fanout is a function of load/gate size
Logical Effort of Gates

\[p = \gamma \cdot \text{Fan-in (for top input)} \]

Normalized delay (d) vs. Fan-out (f)

- \(t_{p\text{NAND-2}} \)
- \(t_{p\text{INV}} \)

LE =

\[p = d = \]
1. Size for same resistance as inverter
2. LE = ratio of input cap of gate versus inverter

Intrinsic capacitance \((C_{dnor}) = \)

\(t_{pint} \) (NOR) =
Any logic function can be implemented using NOR gates only or NAND gates only!

Which of the two approaches is preferable in CMOS (from a performance perspective)?
Logical Effort

[From Sutherland, Sproull, Harris]

<table>
<thead>
<tr>
<th>Gate Type</th>
<th>Number of Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Inverter</td>
<td>1</td>
</tr>
<tr>
<td>NAND</td>
<td>4/3</td>
</tr>
<tr>
<td>NOR</td>
<td>5/3</td>
</tr>
<tr>
<td>Multiplexer</td>
<td>2</td>
</tr>
<tr>
<td>XOR</td>
<td>4</td>
</tr>
</tbody>
</table>
Optimizing Complex Combinational Logic
Multistage Networks

\[\text{Delay} = \sum_{i=1}^{N} (p_i + \text{LE}_i \cdot f_i) \]

Effective fanout: \(\text{EF}_i = \text{LE}_i f_i \)

Path delay \(D = \sum d_i = \sum p_i + \sum \text{EF}_i \)

Path electrical fanout: \(F = \frac{C_L}{C_{in}} = \prod f_i \)

Path logical effort: \(\Pi \text{LE} = \text{LE}_1 \text{LE}_2 \ldots \text{LE}_N \)

Path effort: \(PE = \Pi \text{LE} F \)

Only for tree networks
Adding branching

Branching effort:

\[b = \frac{C_{L,\text{on_path}} + C_{L,\text{off_path}}}{C_{L,\text{on_path}}} \]
Multistage Networks

\[Delay = \sum_{i=1}^{N} (p_i + LE_i \cdot f_i) \]

Effective fanout: \(EF_i = LE_i f_i \)

Path delay \(D = \Sigma d_i = \Sigma p_i + \Sigma EF_i \)

Path electrical fanout: \(F = \frac{C_L}{C_{in}} \)

Branching effort: \(\Pi B = b_1 b_2 \ldots b_N \)

\[\Pi f_i = \Pi B F \quad (\text{assuming all paths in the tree are important}) \]

Path logical effort: \(\Pi LE = LE_1 LE_2 \ldots LE_N \)

Path effort: \(PE = \Pi LE \ \Pi B \ F \)
Optimum Effort per Stage

When each stage bears the same effort (effective fanout):

\[EF^N = PE \]

\[EF = \sqrt[N]{PE} \]

Effective fanouts: \(LE_1 f_1 = LE_2 f_2 = \ldots = LE_N f_N \)

Minimum path delay

\[\hat{D} = \sum_{i=1}^{N} (LE_i f_i + p_i) = N \cdot PE^{1/N} + \sum_{i=1}^{N} p_i \]
Optimal Number of Stages

For a given load, and given input capacitance of the first gate, find optimal number of stages and optimal sizing

\[D = N \cdot PE^{1/N} + \sum P_i \]

Remember: we can always add inverters to the end of the chain

The ‘best effective fanout’ \(EF = PE^{1/\hat{N}} \) is still around 4 (3.6 with \(\gamma = 1 \))
Method of Logical Effort: Summary

- Compute the path effort: \(\text{PE} = (\prod \text{LE})B\text{F} \)
- Find the best number of stages \(N \sim \log_4 \text{PE} \)
- Compute the effective fanout/stage \(\text{EF} = \text{PE}^{1/N} \)
- Sketch the path with this number of stages
- Work either from either end, find sizes:
 \(C_{in} = C_{out} \times \text{LE}/\text{EF} \)

Optimizing Complex Combinational Logic: Examples
Example 1: No branching

Electrical fanout, $F = \Pi LE = PE = EF/\text{stage} = a = b = c = \frac{5}{c}$
Example 1: No branching

Electrical fanout, $F = 5$

\[\Pi LE = \frac{25}{9} \]

\[PE = \frac{125}{9} \]

\[EF/\text{stage} = 1.93 \]

\begin{align*}
\text{From the back} & \\
5/c &= 1.93 \\
(5/3)c/b &= 1.93 \\
(5/3)b/a &= 1.93
\end{align*}

a, b, c are input capacitances normalized to the unit inverter

The diagram shows the connectivity of the circuit with the following LE values:

- LE of the first inverter: 1
 - $f = a$
- LE of the second inverter: \(\frac{5}{3} \)
 - $f = b/a$
- LE of the third inverter: \(\frac{5}{3} \)
 - $f = c/b$
- LE of the fourth inverter: 1
 - $f = 5/c$
Our old problem: which one is better?

\[
LE = 10/3 \quad 1 \\
\Pi \Pi LE = 10/3 \\
P = 8 \quad + \quad 1
\]

\[
LE = 2 \quad 5/3 \\
\Pi \Pi LE = 10/3 \\
P = 4 \quad + \quad 2
\]

\[
LE = 4/3 \quad 5/3 \quad 4/3 \quad 1 \\
\Pi \Pi \Pi \Pi LE = 80/27 \\
P = 2 \quad + \quad 2 \quad + \quad 2 \quad + \quad 1
\]
Adding Branching

\[
LE = 1 \\
F = \frac{90}{5} = 18 \\
PE = 18 \text{ (wrong!)}
\]

\[
EF_1 = \frac{(15+15)}{5} = 6 \\
EF_2 = \frac{90}{15} = 6 \\
PE = 36, \text{ not 18!}
\]

Better: \(PE = F \cdot LE \cdot B = 18 \cdot 1 \cdot 2 = 36 \)
Select gate sizes y and z to minimize delay from A to B

Logical Effort: $LE =$

Electrical Fanout: $F =$

Branching Effort: $B =$

Path Effort: $PE =$

Best Effective Fanout: $EF =$

Delay: $D =$
Example 2 with Branching

Select gate sizes \(y \) and \(z \) to minimize delay from \(A \) to \(B \)

Logical Effort: \(LE = (4/3)^3 \)

Electrical Fanout: \(F = \frac{C_{out}}{C_{in}} = 9 \)

Branching Effort: \(B = 2 \cdot 3 = 6 \)

Path Effort: \(PE = \prod LE \cdot F \cdot B = 128 \)

Best Effective Fanout: \(EF = \frac{PE^{1/3}}{3} \approx 5 \)

Delay: \(D = 3 \cdot 5 + 3 \cdot 2 = 21 \)

Work backward for sizes:

\[
\begin{align*}
\text{z} &= \frac{9C \cdot (4/3)}{5} = 2.4C \\
\text{y} &= \frac{3z \cdot (4/3)}{5} = 1.9C
\end{align*}
\]