Problem 1: Correct JohnW’s lecture mistake! [5 pts]

For the “BCD Incrementer Example” presented in lecture 6, derive the minimized logic equations for the outputs, expressed in sum-of-products (SOP) form.

Solution:

From the truth tables for w, x, y and z:

\begin{align*}
\text{Table for } w:
\begin{array}{c|c|c|c|c|}
ab & cd & 00 & 01 & 11 & 10 \\
\hline
00 & x & 1 \\
01 & x & 0 \\
11 & x & x \\
10 & x & x \\
\end{array}
\end{align*}

\begin{align*}
\text{Table for } x:
\begin{array}{c|c|c|c|c|}
ab & cd & 00 & 01 & 11 & 10 \\
\hline
00 & x & 0 \\
01 & x & 0 \\
11 & x & x \\
10 & x & x \\
\end{array}
\end{align*}

\begin{align*}
\text{Table for } y:
\begin{array}{c|c|c|c|c|c|}
ab & cd & 00 & 01 & 11 & 10 \\
\hline
00 & x & 0 \\
01 & x & 0 \\
11 & x & x \\
10 & x & x \\
\end{array}
\end{align*}

\begin{align*}
\text{Table for } z:
\begin{array}{c|c|c|c|c|c|}
ab & cd & 00 & 01 & 11 & 10 \\
\hline
00 & x & 0 \\
01 & x & 0 \\
11 & x & x \\
10 & x & x \\
\end{array}
\end{align*}
\[w = bcd + a\overline{d} \]
\[x = b\overline{c} + b\overline{d} + \overline{b}cd \]
\[y = \overline{a} \overline{c}d + \overline{c}d \]
\[z = \overline{d} \]

Problem 2: Bubble Pushing [14 pts]

Two-level OR/AND circuits can be implemented as two-level NOR/NOR circuits.

(a) For the example below, using the "bubble pushing" technique, show the series of steps that you would take to convert the circuit to use only NORs. [4pts]

(b) Now convert the OR/AND circuit to use only NANDs (and possibly inverters). [5pts]

(c) Convert the following circuit to all NANDs (and possibly inverters). [5pts]

Solution:

(a) :
(b) :

(c) :

Version: 4 - 2019-03-14 14:10:34-07:00
Problem 3: SOP, POS, and Minimum Expressions [9pts]

Consider the function f defined with the truth-table below:

<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) Write out the sum-of-products (SOP) and product-of-sums (POS) canonical forms. [3pts]

(b) Derive the minimized expressions for f and for f' in SOP and POS forms (four answers required here). Hint: use a K-map. [6pts]

Solution:

(a) *Sum-of-products (SOP):*

\[
\begin{align*}
 f &= \overline{x_0} \overline{x_1} x_2 x_3 + \overline{x_0} x_1 \overline{x_2} x_3 + x_0 \overline{x_1} x_2 x_3 + x_0 x_1 \overline{x_2} x_3 + \\
 &\quad x_0 x_1 x_2 x_3 + x_0 x_1 \overline{x_2} x_3 + x_0 x_1 x_2 \overline{x_3} + x_0 x_1 x_2 x_3
\end{align*}
\]

Product-of-sums (POS):

\[
\begin{align*}
 f &= (x_0 + x_1 + x_2 + x_3)(x_0 + x_1 + \overline{x_2} + x_3)(x_0 + \overline{x_1} + x_2 + x_3)(x_0 + \overline{x_1} + x_2 + \overline{x_3}) \\
 &\quad (x_0 + \overline{x_1} + \overline{x_2} + x_3)(x_0 + \overline{x_1} + \overline{x_2} + \overline{x_3})(\overline{x_0} + x_1 + x_2 + x_3)(\overline{x_0} + x_1 + \overline{x_2} + x_3)
\end{align*}
\]

(b) Build a Karnaugh map for f and \overline{f}:
From the map for f we can derive:

\[f = x_0 x_1 + \overline{x_1} x_3 \]
\[f = (x_0 + \overline{x_1})(x_1 + x_3) \]
(SOP, solid line)
(POS, dotted line)

And from the map for \overline{f} we can derive:

\[\overline{f} = \overline{x_1} \overline{x_3} + \overline{x_0} x_1 \]
\[\overline{f} = (\overline{x_0} + \overline{x_1})(x_1 + \overline{x_3}) \]
(SOP, solid line)
(POS, dotted line)

Notice that the SOP form for f and the POS form for \overline{f} are equivalent under De Morgan’s law - likewise the POS form for f and the SOP form for \overline{f}.

Problem 4: Simplification with Boolean Algebra [6pts]

For the following function g defined with the truth-table below, use algebraic manipulation to derive its minimized form.

<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Solution:

The algebraic derivation starts by reading the SOP form from the truth table and then proceeds as follows:

\[
g = \overline{x_0} \overline{x_1} x_2 + \overline{x_0} x_1 \overline{x_2} + x_0 x_1 x_2
\]
\[
= \overline{x_0} x_1 x_2 + \overline{x_0} x_1 \overline{x_2} + \overline{x_0} x_1 x_2 + x_0 x_2 \overline{x_2}
\]
\[
= \overline{x_0} x_2 (x_1 + \overline{x_1}) + x_1 \overline{x_2} (x_0 + \overline{x_0})
\]
\[
= \overline{x_0} x_2 (1) + x_1 \overline{x_2} (1)
\]
\[
= \overline{x_0} x_2 + x_1 x_2
\]

We can confirm this by looking at the Karnaugh-map:

\[
\begin{array}{cccc}
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 2 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

...from which the simplified expression is also:

\[
g = \overline{x_0} x_2 + x_1 \overline{x_2}
\]
Problem 5: Building a Better Saturating Incrementer [10pts]

Consider the design of a 3-bit binary unsigned incrementer with saturating output. Saturating in this case means that if the input is the maximum representable value (in this case 111₂), then it is passed through unchanged. In Verilog we might try defining the incrementer with:

```verilog
assign y = (x == 3'b111) ? 3'b111 : x + 1;
```

A naive logic synthesizer might turn this into a comparator, a multiplexor, and an adder. Your job is to derive a simpler circuit by hand.

Show your derivation of logic equations for the 3-output bits, y[0], y[1], y[2].

Solution:

First derive an expression for \(g \) as a function of the current value \(x \):

<table>
<thead>
<tr>
<th>(x_2)</th>
<th>(x_1)</th>
<th>(x_0)</th>
<th>(y_2)</th>
<th>(y_1)</th>
<th>(y_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Then derive simplified expressions for each signal in \(y \) using a Karnaugh-map (or otherwise):

\(y_2 \):

\[
y_2 = x_0x_1 + x_2
\]
Problem 6: Writing a FSM in Verilog [8pts]

Write the behavior Verilog description for the Combinational Lock FSM example presented in lecture 7.

Solution:

```verilog
module CombinationalLock(clk, reset, code, enter, open, error);
  input clk, reset;
  input [7:0] code; // Assume code is 8 bits.
  input enter;
```

Version: 4 - 2019-03-14 14:10:34-07:00
output open, error;

parameter START = 3'd0;
parameter OK1 = 3'd1;
parameter OK2 = 3'd2;
parameter BAD1 = 3'd3;
parameter BAD2 = 3'd4;

// Let's pretend that the code is '12'.
parameter CODE1 = 8'd1;
parameter CODE2 = 8'd2;

reg open;
reg error;
reg [2:0] present_state, next_state;

always @(posedge clk)
 if (reset) present_state <= START;
 else present_state <= next_state;

always @(present_state or enter)
case (present_state)
 START: begin
 open = 1'b0;
 error = 1'b0;
 if (enter == 1'b0) next_state = START;
 else if (code == CODE1) next_state = OK1;
 else next_state = BAD1;
 end
 OK1: begin
 open = 1'b0;
 error = 1'b0;
 if (enter == 1'b0) next_state = OK1;
 else if (code == CODE2) next_state = OK2;
 else next_state = BAD2;
 end
 OK2: begin
 open = 1'b1;
 error = 1'b0;
 next_state = START;
 end
 BAD1: begin
 open = 1'b0;
 error = 1'b0;
 if (enter == 1'b1) next_state = BAD2;
 else next_state = BAD1;
 end
Problem 7: Designing an FSM [11pts]

Consider the design of a Moore-style FSM with a 1-bit input (x), and a 1-bit output (y). The FSM accepts inputs one bit at a time and outputs a 0 until it sees the sequence 0101 (with no other bit values in between). After seeing the second 1 in the sequence it outputs a 1 and then starts over.

(a) Draw the state transition diagram. Label all nodes and arcs. [3pts]

(b) Derive the next state logic and the output logic equations. [8pts]

Solution:

(a):
(b) One way is to use one-hot encoding and 5 bits to express states:

\[
S_{\text{WAITING}} = 00001 \\
S_{\text{FIRST}} = 00010 \\
S_{\text{SECOND}} = 00100 \\
S_{\text{THIRD}} = 01000 \\
S_{\text{FOURTH}} = 10000
\]

Then each of the 5 bits of the next state \((n) \) are derived from the current state \((c) \) and input \(x \) as follows, also assuming that there is a reset \(r \):

\[
y = c_4 \\
n_0 = r + c_1 \overline{x} + c_2 x + c_3 \overline{x} + c_4 x + c_0 \\
\quad = r + x (c_2 + c_4 + c_0) + \overline{x} (c_1 + c_3) \\
n_1 = r c_0 x \\
n_2 = \overline{r} c_1 x \\
n_3 = \overline{r} c_2 \overline{x} \\
n_4 = \overline{r} c_3 x
\]

Another way is to express states as integers, \(S_0 \) through \(S_4 \), using only 3 bits of state.

\[
S_0 = 000 \\
S_1 = 001 \\
S_2 = 010 \\
S_3 = 011 \\
S_4 = 100
\]

You can then use Karnaugh-maps to derive simplified expressions for each bit of the next state \(n \) from the current state \(c \) and input \(x \) in the same way as was done for problem 5.

\[
y = n_2 \overline{n_1} \overline{n_0} \\
n_2 = c_1 c_0 x \\
n_1 = c_1 \overline{c_0} x + c_1 \overline{c_0} \overline{x} \\
n_0 = c_0 \overline{x} + \overline{x} \overline{x}
\]
Problem 8: Implementing an FSM [13pts]

Consider the state transition diagram shown below:

![State Transition Diagram]

(a) Write the Verilog behavior description for the corresponding circuit. [5pts]

(b) Draw the circuit diagram for one-hot encoded implementation. (You may assume that flip-flops have both 'set' and 'reset' inputs, but you must label which one you would use for each flip-flop.) [8pts]

Solution:

(a) module Problem(clk, rst, in, out);
 input clk, rst;
 input in;
 output out;

 parameter S0 = 2'b00;
 parameter S1 = 2'b01;
 parameter S2 = 2'b10;
 parameter S3 = 2'b11;

 reg out;
 reg [1:0] present_state, next_state;

 always @(posedge clk)
 if (rst) present_state <= S0;
 else present_state <= next_state;

 always @(present_state or in)
 case (present_state)
 S0: begin
 out = 1'b0;
 endcase
 end
endmodule

Version: 4 - 2019-03-14 14:10:34-07:00
Problem 9: Converting from Mealy to Moore Style [6pts]

Convert the Mealy-style state transition diagram to a Moore-style.
Solution:

\[
\begin{array}{ccc}
S0 & 1 & S0 \\
S1 & 0 & S1 \\
S2 & 1 & S2 \\
\end{array}
\]