Outline

- Clock non-idealities
- Clock Distribution
- Power Distribution
Synchronous Timing - Review
Synchronous Timing

CLK

In

R₁

Combinational Logic

C_in

R₂

C_out

Out
Register Timing Parameters

Output delays can be different for rising and falling data transitions
Timing Constraints

![Diagram of a circuit with timing constraints](image)

- t_{clk-q_max}
- t_{clk-q_min}
- t_{setup}, t_{hold}
- t_{logic_max}
- t_{logic_min}
Timing Constraints

Cycle time (max): $T_{\text{Clk}} > t_{\text{clk-q, max}} + t_{\text{logic, max}} + t_{\text{setup}}$

Race margin (min): $t_{\text{hold}} < t_{\text{clk-q, min}} + t_{\text{logic, min}}$
Clock Nonidealities
Clock Nonidealities

- **Clock skew:** t_{SK}
 - Time difference between the sink (receiving) and source (launching) edge
 - Spatial variation in temporally equivalent clock edges; deterministic + random

- **Clock jitter**
 - Temporal variations in consecutive edges of the clock signal; modulation + random noise
 - Cycle-to-cycle (short-term) t_{JS}
 - Long term t_{JL}

- **Variation of the pulse width**
 - Important for level sensitive clocking
Sources of clock uncertainty

- Clock Generation
- Device Variation
- Power Supply
- Interconnect
- Temperature
- Capacitive Load
- Coupling to Adjacent Lines
Clock Skew and Jitter

- Both skew and jitter affect the effective cycle time and the race margin
Positive Skew

Launching edge arrives before the receiving edge
Negative Skew

Receiving edge arrives before the launching edge edge
Timing Constraints

Minimum cycle time:

\[T_{clk} + \delta = t_{clk-q,\text{max}} + t_{\text{setup}} + t_{\text{logic,\text{max}}} \]
Timing Constraints

Hold time constraint:
\[t_{(clk-q, min)} + t_{(logic, min)} > t_{hold} + \delta \]
Longest Logic Path in Edge-Triggered Systems

Latest point of launching

Earliest arrival of next cycle
Clock Constraints in Edge-Triggered Systems

If launching edge is late and receiving edge is early, the data will not be too late if:

\[t_{\text{clk-q, max}} + t_{\text{logic, max}} + t_{\text{setup}} < T_{\text{CLK}} - t_{JS,1} - t_{JS,2} + \delta \]

Minimum cycle time is determined by the maximum delays through the logic

\[t_{\text{clk-q, max}} + t_{\text{logic, max}} + t_{\text{setup}} - \delta + 2t_{JS} < T_{\text{CLK}} \]

Skew can be either positive or negative

Jitter \(t_{JS} \) usually expressed as peak-to-peak or \(n \times \text{RMS value} \)
Datapath with Feedback

- **Negative skew**

- **Positive skew**

- **Clock distribution**
Clock Distribution
Clock Distribution

- Single clock generally used to synchronize all logic on the same chip (or region of chip)
 - Need to distribute clock over the entire region
 - While maintaining low skew/jitter
 - And without burning too much power
Clock Distribution

- What’s wrong with just routing wires to every point that needs a clock?
H-Tree

Equal wire length/number of buffers to get to every location
More realistic H-tree

[Restle98]
Clock Grid

- No RC matching
- But huge power
Example: DEC Alpha 21164 (1995)

- 2 phase single wire clock, distributed globally
- 2 distributed driver channels
 - Reduced RC delay/skew
 - Improved thermal distribution
 - 3.75nF clock load, 20W power
 - 58 cm final driver width
- Local inverters for latching
- Conditional clocks in caches to reduce power

Clock waveform:
- $t_{\text{cycle}} = 3.3\text{ns}$
- $t_{\text{rise}} = 350\text{ps}$
- $t_{\text{skew}} = 150\text{ps}$
Clock Drivers
Clock Skew in Alpha Processor
2 Phase, with multiple conditional buffered clocks

- 2.8 nF clock load
- 40 cm final driver width

- Local clocks can be gated “off” to save power
- Reduced load/skew
- Reduced thermal issues
- Multiple clocks complicate race checking

Global clock waveform

t_{cycle} = 1.67\text{ns}

t_{skew} = 50\text{ps}

t_{rise} = 350\text{ps}
EV6 Clock Results

GCLK Skew
(at Vdd/2 Crossings)

GCLK Rise Times
(20% to 80% Extrapolated to 0% to 100%)
Clock Tree Delays, IBM Power
Clock circuits live in center column.

32 global clock wires go down the red column.

Any 10 may be sent to a clock region.

Also, 4 regional clocks (restricted functionality).
Clocks have dedicated wires (low skew)

From: Xilinx Spartan 3 data sheet. Virtex is similar.
Low-skew Clocking in FPGAs

Figures from Xilinx App Notes
Die photo: Xilinx Virtex

Gold wires are the clock tree.
No voltage source is ideal - \(||Z|| > 0 \)

Two principal elements increase \(Z \):

- Resistance of supply lines (IR drop)
- Inductance of supply lines (\(L \cdot \frac{di}{dt} \) drop)
Scaling and Supply Impedance

- Typical target for supply impedance is to get 5-10% voltage variation of nominal supply (e.g., 100mV for 1V supply)

- In traditional scaling V_{dd} drops while power stays constant

- This forced drastic drop in supply impedance
 - $V_{dd} \downarrow, I_{dd} \uparrow \Rightarrow |Z_{\text{required}}| \downarrow\downarrow$

- Today’s chips:
 - $|Z_{\text{required}}| \approx 1 \text{ m}\Omega$
 - $V_{dd} = 1V, P=100W \Rightarrow I_{dd}=100A$
 - For $\Delta V_{dd,\text{max}} = 100mV$,
 $Z_{dd,\text{max}} = 100mV/100A = 1m\Omega$
IR Drop Example

- Intel Pentium 4: ~103W at ~1.275V
 - $I_{dd} = 81\text{Amps}$

- For 10% IR drop, total distribution resistance must be less than $1.6\text{m}\Omega$

- On-chip wire $R \approx 20\text{m}\Omega/\text{sq. (thick metal)}$
 - Can’t meet R requirement even with multiple, complete layers dedicated to power
 - Main motivation for flip-chip packaging
Achieving such low impedance requires a lot of resources:

- ~70% of package pins just for power
- Top 2-3 (thick) metal layers
On-chip wires: current limited to \(~1\text{mA}/\mu\text{m}\) for 5-7 year lifetime
On-Chip Power Distribution

- Power network usually follows pre-defined template (often referred to as “power grid”)

![Power Network Diagram](image-url)
3 Metal Layer Approach (EV4)

3rd “coarse and thick” metal layer added to the technology for EV4 design
Power supplied from two sides of the die via 3rd metal layer
2nd metal layer used to form power grid
90% of 3rd metal layer used for power/clock routing

Courtesy Compaq
4 Metal Layers Approach (EV5)

4th “coarse and thick” metal layer added to the technology for EV5 design
Power supplied from four sides of the die
Grid strapping done all in coarse metal
90% of 3rd and 4th metals used for power/clock routing

Courtesy Compaq
6 Metal Layer Approach – EV6

2 reference plane metal layers added to the technology for EV6 design
Solid planes dedicated to Vdd/Vss
Lowers on-chip inductance

Courtesy Compaq
Decoupling capacitors are added:

- On the board (right under the supply pins)
- On the chip (under the supply straps, near large buffers)
Decoupling Capacitors

- Under the die
Pin Inductance Example

- Processor transient current is 100A in 20ps from 1V supply
- C4 bump inductance is 25pH
- How many C4 bumps do we need to get supply noise spike of less than 10%?

\[V = L \cdot \frac{dI}{dt} \]

- With wirebond inductance of 1nH (1nH/mm) how many wirebonds are needed?