Designing DNN Accelerators

Qijing Jenny Huang

Outline

Deep Neural Network (DNN) Basics
 DNN Accelerators
 High-level Synthesis (HLS)

DNN Basics

Learning from the Brain

- The basic computational unit of the brain is a neuron
 - 86B neurons in the brain
- Neurons are connected with nearly **10**¹⁴ **10**¹⁵ synapses
- Neurons receive input signal from **dendrites** and produce output signal along **axon**, which interact with the dendrites of other neurons via **synaptic weights**
- Synaptic weights learnable & control the influence strength

* Slide from http://cs231n.github.io/

Neural Networks

- NNs are usually feed forward computational graphs constructed from many computational "Neurons"
- The "Neurons":
 - Integrate typically linear transform (dot-product of receptive field)
 - Fire followed by a non-linear "activation" function

* Slide from http://cs231n.github.io/

Deep Neural Networks (DNN)

• An Neural Network with multiple layers between the inputs and outputs

DNN Examples

AlexNet 2012 (8 layers)

GoogLeNet 2014 (22 layers)

ResNet 2015 (152 layers)

DenseNet 2016 (dense connections)

DLA 2017 (deep aggregation)

NasNet 2017 (NAS design)

Training vs. Inference

Training (supervised)

Process for a machine to learn by optimizing models (weights) from labeled data.

Inference

Using trained models to predict or estimate outcomes from new inputs.

DNN Applications

Autonomous Vehicles

Security Camera

Drones

Medical Imaging

Robots

Mobile Applications

Computer Vision (CV) Tasks

Image Classification

Object Detection

Semantic Segmentation

Super Resolution

Activity Recognition

Nature Language Processing (NLP) Tasks

Many Other Tasks

- Recommendation Systems (DLRM)
- Machine Translation (Transformer and GNMT)
- Deep Reinforce Learning (AlphaGo)

DNN Evaluation Metrics

- 1. Accuracy
- 2. Computation Complexity
- 3. Model Size

DNN Accelerators

Many AI Chips

In the Cloud (Training + Inference)

- 10s TFLOPs
- 10s MB on-chip memory
- 8 32 bit precision
- 700 MHz 1 GHz
- 10-100s Watts

Cloud TPU v3 (45 TFLOP/s)

At the Edge (Inference)

- 100s-1000s GFLOPs
- 100s KB on-chip memory
- 1 16 bit precision
- 50 MHz 400 MHz
- 1-10s Watts

Intel Movidius (4 TFLOP/s)

In the Edge SoC/SiP (Inference)

> 112 AI chip companies worldwide

(https://github.com/basicmi/AI-Chip)

- 10s-1000s GFLOPs
- 100s KB on-chip memory
- 1 16 bit precision
- 600 MHz 1 GHz
- 10-100s mWatts

Cambricon-1M IP

* Data adapted from Prof. Kurt Keutzer's talk at DAC 2018

* Image from https://www.electronicproducts.com/Digital_ICs/Designer_s_Guide_Selecting_AI_chips_for_embedded_designs.aspx 16

Accelerator Evaluation Metrics

- 1. Throughput
 - Frames per second
- 2. Latency
 - Time to finish one frame
- 3. Power
- 4. Energy
- 5. Hardware Cost
 - Resource Utilization

https://mlperf.org/

Example Hardware Comparison

	#	Metric	Google TPU v3	Nvidia V100	Nvidia A100	Cerebras WSE	GraphCore IPU1	GraphCore IPU2
-	1	Technology node	>12nm (16 nm est.)	TSMC 12 nm	TSMC 7 nm	TSMC 16 nm	TSMC 16 nm	TSMC 7 nm
	2	Die Area (mm2)	<648 (600 est.)	815	826	46225	900 (est.)	823
	3	Transistor Count (B)	11 (est.)	21	54.2	1200	23.6	59.4
	4	Architecture	Systolic Array	SIMD	SIMD	SIMD	SIMD	SIMD
ics	5	Theoretical TFLOPS (16-bit mixed precision)	123	125	312	2500	125	250
let	6	Freq (GHZ)	0.92	1.5	1.4	Unknown	1.6	Unknown
2 3	7	DRAM Capacity (GB)	32	32	80	N/A	N/A	112
Ra	8	DRAM BW (GB/sec)	900	900	2039	N/A	N/A	64 (est.)
	9	Total SRAM Capacity	32MB	36 MB (RF+L1+L2)	87 MB (RF+L1+L2)	18 GB	300 MB	900 MB
	10	SRAM BW (TB/sec)	Unknown	224 @RF + 14 @L1 + 3 @L2	608 @RF+ 19 @L1 + 7 @L2	9000	45	47.5
	11	Max TDP (Watts)	450	450	400	20K	150	150 (est.)
	12	GEMM Achievable TFLOPS	98% (120 TFLOPS)	88% (110 TFLOPS)	93% (290 TFLOPS)	Unknown	47% (58 TFLOPS)	61% (154 TFLOPS)
	13	Energy Efficiency (Achievable GEMM TFLOPS/Max Watts)	0.26	0.24	0.72	Unknown	0.39	1.0
rics	14	Theoretical Energy Efficiency (Theoretical TFLOPS/Max Watts)	0.27	0.27	0.78	0.125	0.83	1.6
Mei	15	Memory Capacity (GB)	16	32	80	18	0.3	112
Efficiency	16	Memory Efficiency (FLOP/DRAMByte)	133	122	158	N/A	N/A	Unknown
	17	Memory Efficiency (FLOP/SRAMByte)	Unknown	32	35	Unknown	1.28	3.2
	18	Area Efficiency (Achievable TFLOPS/mm2)	0.2	0.13	0.35	Unknown	0.06	0.17
	19	Area Efficiency (Achievable TFLOPS/BTran)	11	5.2	5.3	Unknown	2.5	2.6

* Table from

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38

How to design your own DNN accelerator?

Understand the basic operations

Common DNN Operations

- Convolution (Groupwise, Dilated, Transposed, 3D and etc.)
- ReLU
- Pooling (Average, Max)
- Fully-Connected
- Batch Normalization

Activation/Feature Maps

- Input images have three dimensions with RGB channels
- Intermediate data might have more channels after performing convolution
- We refer to them as feature maps

Weights/Kernels

- weights for full convolution typically have four dimensions:
 - input channels, width, height, output channels
- input channel size matches the channel dimension of input features
- output channel size specifies the channel dimension of output features

3x3 Convolution - Spatially

Output feature map

Input feature map

- 3x3 Conv with No Stride, No Padding
- Weights = [[0, 1, 2], [2,2,0], [0,1,2]]

Output feature map

Input feature map

- 3x3 Conv with Stride 2, Padding 1
- Weights = [[2, 0, 1], [1,0,0], [0,1,1]]

 $O_{00} = I_{00} \times W_{00} + I_{01} \times W_{01} + I_{02} \times W_{02} + I_{10} \times W_{10} + I_{11} \times W_{11} + I_{12} \times W_{12} + I_{20} \times W_{20} + I_{21} \times W_{21} + I_{22}$

* gif from²<u>Attp://deeplearning.net/software/theano_versions/dev/_images/</u>

3x3 Convolution - 3D

Fully-Connected Layer (FC)

- Each input activation is connected to every output activation
- Essentially a matrix-vector multiplication

ReLU Activation Function

- Implements the concept of "Firing"
- Introduces non-linearity
- Rectified Linear Unit
 - \circ R(z) = max(0, z)
- Not differentiable at 0

Batch Normalization (BN)

 Shifts and scales activations to achieve <u>zero-centered</u> <u>distribution with unit</u>

<u>variance</u>

- Subtracts mean
- Divides by standard deviation

27

* images from https://en.wikipedia.org/wiki/Normal distribution

Pooling

• Downsamples

- Takes the maximum
- Takes the average
- Operates at each feature map independently

* images from http://cs231n.github.io/convolutional-networks/

112x112x64

112

112

Full DNN Example: AlexNet

Top-1 Accuracy	57.1%
Top-5 Accuracy	80.2%
Model Size	61M
MACs	725M

How to design your own DNN accelerator?

Understand the basic operations

2. Analyze the workload

The Roofline Model

- π the peak compute performance
- β the peak bandwidth
- I the arithmetic intensity
- The attainable throughput P:

$$P = \min \left\{ egin{smallmatrix} \pi \ eta imes I \end{array}
ight.$$

- **Performance** is upper bounded by <u>the peak performance</u>, <u>the communication</u> <u>bandwidth</u>, and <u>the operational intensity</u>
- Arithmetic Intensity is the ratio of the compute to the memory traffic

The Roofline Model

Figure from https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf

How to design your own DNN accelerator?

Conv Mapping 1: Matrix-Matrix Multiplication

- Im2Col stores in each column the necessary pixels for each kernel map
 - Duplicates input feature maps in memory
 - Restores output feature map structure

Im2col Transform

* from https://www.researchgate.net/publication/327070011_Accelerating_Deep_Neural_Networks_on_Low_Power_Heterogeneous_Architectures

Image to column operation (im2col) Slide the input image like a convolution but each patch become a column vector.

Optimization: Winograd Algorithm

Winograd performs convolution in a transformed domain to reduces the total number of multiplications.

GEMM Example:

Conv Mapping 2: Matrix-Vector Multiplication

Input Channels (IC)

- For each pixel, we can first perform Matrix-Vector Multiplication along the input channel dimension
- Then we can use adder-tree to aggregate the sum of K x K pixels (K is the kernel size)

Implementation: Systolic Array

- **Systolic Array** is a homogeneous network of tightly coupled data processing units (DPUs).
- Each **DPU** independently computes a partial result as a function of the data received from its upstream neighbors, stores the result within itself and passes it downstream.
- Advantages of systolic array design:
 - Shorter wires -> lower propagation delay and lower power consumption
 - High degree of pipelining -> faster clock
 - High degree of parallelism -> high throughput
 - Simple control logic -> less design efforts

* Images from http://www.telesens.co/2018/07/30/systolic-architectures/

DNN Accelerator Design 1: Layer-based

DNN Accelerator Design 2: Spatially-mapped

Line-Buffer Design

- Buffers inputs to perform spatial operations
- Buffers inputs for reuse to improve the arithmetic intensity

 * Ritchie Zhao, et al. Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA '17)

4	2	5	6	9	
1	3	8	7	3	
6	4	2	8	1	

4	2	5	6	9	
1	3	8	7	3	
6	4	2	8	1	
4					

4	2	5	6	9
1	3	8	7	3
6	4	2	8	1

4	2	5	6	9
1	3	8	7	3
6	4	2	8	1
		/		
4				

4	2	5	6	9
1	3	8	7	3
6	4	2	8	1
4	8			

How to design your own DNN accelerator?

AlexNet Design

57

AlexNet Design

High-Level Synthesis (HLS)

- Allows users to specify algorithm logic in high-level languages
 - No concept of clock
 - Not specifying register-transfer level activities
- HLS compiler generates RTL based on high-level algorithmic description
 - Allocation
 - Scheduling
 - Binding
- Advantages:
 - Faster development and debugging cycles
 - More structural code
 - Focuses on larger architecture design tradeoffs

HLS Abstraction

- High-level Languages
 - \circ C/C++, OpenCL, GoLang
- Typical hardware mapping
 - C Function -> Verilog Module
 - Function Arguments -> Memory Ports
 - Basic Blocks (blocks without branches) -> Hardware Logic
 - Operators -> Functional Units
 - Arrays -> BRAMs
 - Control Flow Graph (CFG) -> Finite-state Machine (FSM)
- Limitations:
 - No dynamic memory allocation allowed
 - No recursion support

Example: Matrix Multiplication

Step 1: Partition Local Arrays

// Local memory to store input and output matrices
int localA[MAX_SIZE][MAX_SIZE];

#pragma HLS ARRAY_PARTITION variable=localA dim=1 complete

int localB[MAX_SIZE][MAX_SIZE];
#pragma HLS ARRAY_PARTITION variable=localB dim=2 complete

```
int localC[MAX_SIZE][MAX_SIZE];
```

#pragma HLS ARRAY_PARTITION variable=localC dim=0 complete

Step 2: Design Systolic Array (Implicit)

```
systolic1: for(int k = 0; k < a_col; k++) {
#pragma HLS LOOP_TRIPCOUNT min=c_size max=c_size
#pragma HLS PIPELINE II=1
systolic2: for(int i = 0; i < MAX_SIZE; i++) {
    systolic3: for(int j = 0; j < MAX_SIZE; j++) {
}
</pre>
```

```
// Get previous sum
int last = (k==0) ? 0 : localC[i][j];
```

```
// Update current sum
// Handle boundary conditions
int a_val = (i < a_row && k < a_col)? localA[i][k] : 0;
int b_val = (k < b_row && j < b_col)? localB[k][j] : 0;
int result = last + a_val*b_val;</pre>
```

```
// Write back results
localC[i][j] = result;
```

}

Step 2: Design Systolic Array (Explicit)

```
for (int r = 0; r < N + 2 * MAX SIZE - 2; r++) {
#pragma HLS pipeline
                // update data (i.e., reads data from previous PE)
                for (int i = 0; i < MAX SIZE; i++)</pre>
                     for (int j = MAX SIZE - 1; j >= 1; j--)
                         localA[i][j] = localA[i][j - 1];
                 for (int i = MAX SIZE - 1; i >= 1; i--)
                     for (int j = 0; j < MAX SIZE; j++)
                         localB[i][j] = localB[i - 1][j];
                // read new data from inputs
                // not ok here!
                for (int i = 0; i < MAX SIZE; i++) {</pre>
                     if (r >= i \&\& r < i + N)
                         localA[i][0] = A[i + ii * MAX SIZE][r - i];
                     else
                         localA[i][0] = 0;
                 }
                 for (int j = 0; j < MAX SIZE; j++) {</pre>
                     if (r \ge j \& \& r < j + N)
                         localB[0][j] = B[r - j][j + jj * MAX SIZE];
                     else
                         localB[0][j] = 0;
                 }
                // PE
                 for (int i = 0; i < MAX SIZE; i++)</pre>
                     for (int j = 0; j < MAX_SIZE; j++)</pre>
                         C[i + ii * MAX SIZE][j + jj * MAX SIZE] += localA[i][j] * localB[i][j];
             }
```

Step 3: Schedule Outer Loop Control Logic and Memory Accesses

```
// Burst reads on input matrices from global memory
// Read Input A
 readA: for(int loc = 0, i = 0, j = 0; loc < a_row*a_col; loc++, j++) {
#pragma HLS LOOP_TRIPCOUNT min=c_size*c_size max=c_size*c_size
#pragma HLS PIPELINE II=1
    if(j == a_col) { i++; j = 0;}
    localA[i][j] = a[loc];
 }
// Read Input B
 readB: for(int loc = 0, i = 0, j = 0; loc < b_row*b_col; loc++, j++) {
#pragma HLS LOOP_TRIPCOUNT min=c_size*c_size max=c_size*c_size
#pragma HLS PIPELINE II=1
    if(j == b_col) { i++; j = 0; }
    localB[i][j] = b[loc];
 }
// Burst write from output matrices to global memory
// Burst write from matrix C
writeC: for(int loc = 0, i = 0, j = 0; loc < c_row*c_col; loc++, j++) {</pre>
#pragma HLS LOOP_TRIPCOUNT min=c_size*c_size max=c_size*c_size
#pragma HLS PIPELINE II=1
    if(j == c_col) { i++; j = 0; }
    c[loc] = localC[i][j];
```

* Please see the <u>SDAccel page</u> for detailed source code

Resources

- EE290-2: Hardware for Machine Learning
- MIT Eyeriss Tutorial
- Vivado HLS Design Hubs
- Parallel Programming for FPGAs
- Cornell ECE 5775: High-Level Digital Design Automation
- LegUp: Open-source HLS Compiler
- VTA design example
- <u>Vivado SDAccel design examples</u>

Questions?