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Learning from the Brain 

● The basic computational unit of the brain is a neuron
○ 86B neurons in the brain

● Neurons are connected with nearly 1014 – 1015 synapses 
● Neurons receive input signal from dendrites and produce output signal along 

axon, which interact with the dendrites of other neurons via synaptic weights
● Synaptic weights – learnable & control the  influence strength

Integrate and Fire

* Slide from http://cs231n.github.io/ 4

http://cs231n.github.io/


Neural Networks 

● NNs are usually feed forward computational graphs constructed from many 
computational “Neurons”

● The “Neurons”:
○ Integrate - typically linear transform (dot-product of receptive field)
○ Fire - followed by a non-linear “activation” function

* Slide from http://cs231n.github.io/ 5

http://cs231n.github.io/


Deep Neural Networks (DNN)
● An Neural Network with multiple layers between the inputs and outputs

6* Image from Eyeriss Tutorial: http://eyeriss.mit.edu/tutorial.html

http://eyeriss.mit.edu/tutorial.html


DNN Examples 
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GoogLeNet 2014 (22 layers) ResNet 2015 (152 layers) 

DenseNet 2016 (dense connections) DLA 2017 (deep aggregation) NasNet 2017 (NAS design) 

AlexNet 2012 (8 layers) 



Training vs. Inference
Training (supervised)

Process for a machine to learn by 

optimizing models (weights) from 

labeled data.

* Slide from https://www.hotchips.org/archives/2010s/hc30/

Inference 

Using trained models to predict or 

estimate outcomes from new inputs.
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https://www.hotchips.org/archives/2010s/hc30/


DNN Applications

Autonomous Vehicles Security Camera Drones

Medical Imaging Robots Mobile Applications
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Computer Vision (CV) Tasks 

Image Classification Semantic SegmentationObject Detection

Super Resolution

Sedan: 0.90
Motorcycle: 0.02
Truck: 0.05
Toy: 0.03
...

Activity Recognition

Draw Sword: 0.60
Stand: 0.02
Fence: 0.35
Throw: 0.03
...
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Nature Language Processing (NLP) Tasks 

11* Image from “Practical Natural Language Processing”: https://github.com/practical-nlp/practical-nlp

https://github.com/practical-nlp/practical-nlp


Many Other Tasks
● Recommendation Systems (DLRM)
● Machine Translation (Transformer and  GNMT)
● Deep Reinforce Learning (AlphaGo)
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DNN Evaluation Metrics
1. Accuracy 
2. Computation Complexity
3. Model Size 

13* Image from “MLPerf Inference Benchmark”: https://arxiv.org/abs/1911.02549

https://arxiv.org/abs/1911.02549


DNN Accelerators 
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Many AI Chips
In the Cloud 
(Training + Inference)

● 10s TFLOPs
● 10s MB on-chip memory
● 8 - 32 bit precision  
● 700 MHz - 1 GHz
● 10-100s Watts 

Cloud TPU v3 (45 TFLOP/s)

At the Edge 
(Inference)

● 100s-1000s GFLOPs
● 100s KB on-chip memory
● 1 - 16 bit precision  
● 50 MHz - 400 MHz
● 1-10s Watts 

In the Edge SoC/SiP
(Inference)

● 10s-1000s GFLOPs
● 100s KB on-chip memory
● 1 - 16 bit precision  
● 600 MHz - 1 GHz
● 10-100s mWatts 

Intel Movidius (4 TFLOP/s) Cambricon-1M IP

> 112 AI chip companies worldwide
(https://github.com/basicmi/AI-Chip) 

* Data adapted from Prof. Kurt Keutzer’s talk at DAC 2018 15

https://github.com/basicmi/AI-Chip


* Image from https://www.electronicproducts.com/Digital_ICs/Designer_s_Guide_Selecting_AI_chips_for_embedded_designs.aspx 16



Accelerator Evaluation Metrics
1. Throughput

○ Frames per second

2. Latency
○ Time to finish one frame

3. Power
4. Energy
5. Hardware Cost 

○ Resource Utilization
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https://mlperf.org/

Benchmarks: 

https://mlperf.org/


Example 
Hardware 
Comparison
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* Table from 
https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38
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1. Understand the basic operations

How to design your own DNN accelerator?



Common DNN Operations
● Convolution (Groupwise, Dilated, Transposed, 3D and etc.)
● ReLU
● Pooling (Average, Max)
● Fully-Connected 
● Batch Normalization
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Activation/Feature Maps
● Input images have three dimensions with RGB channels
● Intermediate data might have more channels after performing convolution
● We refer to them as feature maps 

Channel Dimension

One Feature Map : 

height

width

Input Image: 
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Weights/Kernels
● weights for full convolution typically have four dimensions:

○ input channels, width, height, output channels

● input channel size matches the channel dimension of input features
● output channel size specifies the channel dimension of output features

Input Channels (IC) 

Input Image: Weights:

Output 
Channels
(OC)

Output Channels  
(OC)

Output Image: 

22



3x3 Convolution - Spatially

● 3x3 Conv with No Stride, No Padding

● Weights = [[0, 1, 2], [2,2,0], [0,1,2]]

● 3x3 Conv with Stride 2, Padding 1

● Weights = [[2, 0, 1], [1,0,0], [0,1,1]]

 

* gif from http://deeplearning.net/software/theano_versions/dev/_images/ 

Output feature map 

Input feature map

Input feature map

Output feature map 
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http://deeplearning.net/software/theano_versions/dev/_images/


3x3 Convolution - 3D

* gif from https://cdn-images-1.medium.com/max/800/1*q95f1mqXAVsj_VMHaOm6Sw.gif

Input 
Channels 

Output 
Channels 
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https://cdn-images-1.medium.com/max/800/1*q95f1mqXAVsj_VMHaOm6Sw.gif


Fully-Connected Layer (FC)
● Each input activation is connected to every 

output activation
● Essentially a matrix-vector multiplication

Input Activations:
IC x 1

Weights:  
OC x IC

OC

IC

IC

  1

=

  1

OC

Output Activations:
OC x 1
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ReLU Activation Function 
● Implements the concept of 

“Firing”
● Introduces non-linearity 
● Rectified Linear Unit

○ R(z) = max(0, z)

● Not differentiable at 0
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Batch Normalization (BN) 
● Shifts and scales activations 

to achieve zero-centered 
distribution with unit 
variance 

○ Subtracts mean

○ Divides by standard deviation 

* images from https://en.wikipedia.org/wiki/Normal_distribution 27

https://en.wikipedia.org/wiki/Normal_distribution


Pooling 
● Downsamples

○ Takes the maximum

○ Takes the average

● Operates at each feature map independently

 

* images from http://cs231n.github.io/convolutional-networks/ 28

http://cs231n.github.io/convolutional-networks/


Full DNN Example: AlexNet

Top-1 Accuracy 57.1%

Top-5 Accuracy 80.2%

Model Size 61M

MACs 725M
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Full DNN Example: ResNet-34

Top-1 Accuracy 73.3%

Top-5 Accuracy 91.3%

Model Size 83M

MACs 2G

30
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1. Understand the basic operations

2. Analyze the workload

How to design your own DNN accelerator?



The Roofline Model

● Performance is upper bounded by the peak performance, the communication 
bandwidth, and the operational intensity 

● Arithmetic Intensity is the ratio of the compute to the memory traffic 

Image from https://en.wikipedia.org/wiki/Roofline_model

● π - the peak compute performance
● β - the peak bandwidth
● I - the arithmetic intensity

● The attainable throughput P: 

32

https://en.wikipedia.org/wiki/Roofline_model


The Roofline Model 

Figure from https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf 33

https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf
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1. Understand the basic operations

2. Analyze the workload

3. Compare different design options

How to design your own DNN accelerator?



Conv Mapping 1: Matrix-Matrix 
Multiplication
● Im2Col stores in each column the necessary pixels for each kernel map

○ Duplicates input feature maps in memory 

○ Restores output feature map structure

* Image from http://nmhkahn.github.io/CNN-Practice 35

http://nmhkahn.github.io/CNN-Practice


Im2col Transform

* from https://www.researchgate.net/publication/327070011_Accelerating_Deep_Neural_Networks_on_Low_Power_Heterogeneous_Architectures36

https://www.researchgate.net/publication/327070011_Accelerating_Deep_Neural_Networks_on_Low_Power_Heterogeneous_Architectures


* Image from https://github.com/numforge/laser/wiki/Convolution-optimisation-resources 37

https://github.com/numforge/laser/wiki/Convolution-optimisation-resources


Optimization: Winograd Algorithm
Winograd performs convolution in a transformed domain to reduces the total 
number of multiplications. 

38

Inputs:

GEMM Example:

FFT performs convolution in the 
frequency domain by performing 
pointwise multiplication.

Transformed 
Inputs:

Result:

6 MUL 4 MUL



Conv Mapping 2: Matrix-Vector 
Multiplication
● For each pixel, we can first perform Matrix-Vector Multiplication along the 

input channel dimension
● Then we can use adder-tree to aggregate the sum of K x K pixels (K is the kernel 

size)

Input 
Activations:

Weights:  

OC

IC

IC

 1

=
 1

OC

Partial Sums

Input Channels (IC)

Input Image: Weights:

Output 
Channels
(OC)

1

1

1

1

1

1

1

1

1

1

Input Channels (IC)

Output Channels  (OC)

Output Image: 

=
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Implementation: Systolic Array
● Systolic Array is a homogeneous network of tightly coupled data processing 

units (DPUs). 
● Each DPU independently computes a partial result as a function of the data 

received from its upstream neighbors, stores the result within itself and passes 
it downstream.

● Advantages of systolic array design:
○ Shorter wires ->  lower propagation delay and lower  power consumption

○ High degree of pipelining -> faster clock

○ High degree of parallelism -> high throughput

○ Simple control logic -> less design efforts

40
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System Architecture

MAC design

C[i][j] = C[i][j] + A[i][k] * B[k][j]

i
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* Images from http://www.telesens.co/2018/07/30/systolic-architectures/ 41

http://www.telesens.co/2018/07/30/systolic-architectures/


DNN Accelerator Design 1:  Layer-based 

Controllers: 

Stream Buffer 

Systolic Array for Convolution / Fully Connected Layer 

BN

PE 1 PE 2 PE 3 PE 4 PE 
N-1 PE N...

   ReLUPooling

DDR

Input Weights Output Output Output

42



DNN Accelerator Design 2:  Spatially-mapped

BRAMs: 

DDR

weights
& bias

Conv
3x3

BN

ReLU
Inputs

weights
& bias

BN

ReLU

Pool

weights
& bias

...

Layer1 Layer2 LayerN

Conv
1x1 FC
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Line-Buffer Design 

● Buffers inputs to perform spatial operations 

● Buffers inputs for reuse to improve the arithmetic intensity 

* Ritchie Zhao, et al. Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs. In Proceedings of the 2017 
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA '17) 44



Line-Buffer Execution Model
● 2x2 Max Pooling
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Line-Buffer Execution Model
● 2x2 Max Pooling
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Line-Buffer Execution Model
● 2x2 Max Pooling
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● 2x2 Max Pooling

Line-Buffer Execution Model
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Line-Buffer Execution Model
● 2x2 Max Pooling

49
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1. Understand the basic operations

2. Analyze the workload

3. Compare different design options

4. Develop software runtime

How to design your own DNN accelerator?



Execution Model 

Conv ReLu BN MaxPool FC

AlexNet Design

1
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Execution Model 

Conv ReLu BN MaxPool FC

AlexNet Design

2
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Execution Model 

Conv ReLu BN MaxPool FC

AlexNet Design

3
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Execution Model 

Conv ReLu BN MaxPool FC

AlexNet Design

4
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Execution Model 

Conv ReLu BN MaxPool FC

AlexNet Design

5
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Execution Model 

Conv ReLu BN MaxPool FC

AlexNet Design

6
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Execution Model 

Conv ReLu BN MaxPool FC

AlexNet Design

7
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Execution Model 

Conv ReLu BN MaxPool FC

AlexNet Design

8
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HLS
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High-Level Synthesis (HLS)
● Allows users to specify algorithm logic  in high-level languages 

○ No concept of clock 

○ Not specifying register-transfer level activities

● HLS compiler generates RTL based on high-level algorithmic description
○ Allocation 

○ Scheduling 

○ Binding

● Advantages: 
○ Faster development and debugging cycles 

○ More structural code

○ Focuses on larger architecture design tradeoffs

60



HLS Abstraction
● High-level Languages 

○ C/C++, OpenCL, GoLang

● Typical hardware mapping
○ C Function -> Verilog Module

○ Function Arguments -> Memory Ports 

○ Basic Blocks (blocks without branches) -> Hardware Logic

○ Operators -> Functional Units

○ Arrays -> BRAMs 

○ Control Flow Graph (CFG) -> Finite-state Machine (FSM)

● Limitations: 
○ No dynamic memory allocation allowed 

○ No recursion support

61



Example: Matrix Multiplication
Step 1: Partition Local Arrays 
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Step 2: Design 
Systolic Array
(Implicit)
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Step 2: Design 
Systolic Array
(Explicit)
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Step 3: Schedule 
Outer Loop 
Control Logic and 
Memory 
Accesses

 

* Please see the SDAccel page for detailed source code 65

https://github.com/Xilinx/SDAccel_Examples/blob/1e273f6ef01073f878a4c2b5ca4d6ad5aec7e616/getting_started/kernel_opt/systolic_array_c/src/mmult.cpp


Resources
● EE290-2: Hardware for Machine Learning 

● MIT Eyeriss Tutorial

● Vivado HLS Design Hubs

● Parallel Programming for FPGAs 

● Cornell ECE 5775: High-Level Digital Design Automation

● LegUp: Open-source HLS Compiler 

● VTA design example

● Vivado SDAccel design examples
66

https://inst.eecs.berkeley.edu//~ee290-2/sp21/
http://eyeriss.mit.edu/tutorial.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://arxiv.org/pdf/1805.03648.pdf
https://www.csl.cornell.edu/courses/ece5775/schedule.html
http://legup.eecg.utoronto.ca/docs/4.0/index.html
https://github.com/dmlc/tvm/blob/master/vta/hardware/xilinx/src/vta.cc
https://github.com/Xilinx/SDAccel_Examples


Questions?
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