
Designing
DNN

Accelerators

Qijing Jenny Huang

1. Deep Neural Network (DNN) Basics
2. DNN Accelerators
3. High-level Synthesis (HLS)

Outline

2

DNN Basics

3

Learning from the Brain

● The basic computational unit of the brain is a neuron
○ 86B neurons in the brain

● Neurons are connected with nearly 1014 – 1015 synapses
● Neurons receive input signal from dendrites and produce output signal along

axon, which interact with the dendrites of other neurons via synaptic weights
● Synaptic weights – learnable & control the influence strength

Integrate and Fire

* Slide from http://cs231n.github.io/ 4

http://cs231n.github.io/

Neural Networks

● NNs are usually feed forward computational graphs constructed from many
computational “Neurons”

● The “Neurons”:
○ Integrate - typically linear transform (dot-product of receptive field)
○ Fire - followed by a non-linear “activation” function

* Slide from http://cs231n.github.io/ 5

http://cs231n.github.io/

Deep Neural Networks (DNN)
● An Neural Network with multiple layers between the inputs and outputs

6* Image from Eyeriss Tutorial: http://eyeriss.mit.edu/tutorial.html

http://eyeriss.mit.edu/tutorial.html

DNN Examples

7

GoogLeNet 2014 (22 layers) ResNet 2015 (152 layers)

DenseNet 2016 (dense connections) DLA 2017 (deep aggregation) NasNet 2017 (NAS design)

AlexNet 2012 (8 layers)

Training vs. Inference
Training (supervised)

Process for a machine to learn by

optimizing models (weights) from

labeled data.

* Slide from https://www.hotchips.org/archives/2010s/hc30/

Inference

Using trained models to predict or

estimate outcomes from new inputs.

8

https://www.hotchips.org/archives/2010s/hc30/

DNN Applications

Autonomous Vehicles Security Camera Drones

Medical Imaging Robots Mobile Applications

9

Computer Vision (CV) Tasks

Image Classification Semantic SegmentationObject Detection

Super Resolution

Sedan: 0.90
Motorcycle: 0.02
Truck: 0.05
Toy: 0.03
...

Activity Recognition

Draw Sword: 0.60
Stand: 0.02
Fence: 0.35
Throw: 0.03
...

10

Nature Language Processing (NLP) Tasks

11* Image from “Practical Natural Language Processing”: https://github.com/practical-nlp/practical-nlp

https://github.com/practical-nlp/practical-nlp

Many Other Tasks
● Recommendation Systems (DLRM)
● Machine Translation (Transformer and GNMT)
● Deep Reinforce Learning (AlphaGo)

12

DNN Evaluation Metrics
1. Accuracy
2. Computation Complexity
3. Model Size

13* Image from “MLPerf Inference Benchmark”: https://arxiv.org/abs/1911.02549

https://arxiv.org/abs/1911.02549

DNN Accelerators

14

Many AI Chips
In the Cloud
(Training + Inference)

● 10s TFLOPs
● 10s MB on-chip memory
● 8 - 32 bit precision
● 700 MHz - 1 GHz
● 10-100s Watts

Cloud TPU v3 (45 TFLOP/s)

At the Edge
(Inference)

● 100s-1000s GFLOPs
● 100s KB on-chip memory
● 1 - 16 bit precision
● 50 MHz - 400 MHz
● 1-10s Watts

In the Edge SoC/SiP
(Inference)

● 10s-1000s GFLOPs
● 100s KB on-chip memory
● 1 - 16 bit precision
● 600 MHz - 1 GHz
● 10-100s mWatts

Intel Movidius (4 TFLOP/s) Cambricon-1M IP

> 112 AI chip companies worldwide
(https://github.com/basicmi/AI-Chip)

* Data adapted from Prof. Kurt Keutzer’s talk at DAC 2018 15

https://github.com/basicmi/AI-Chip

* Image from https://www.electronicproducts.com/Digital_ICs/Designer_s_Guide_Selecting_AI_chips_for_embedded_designs.aspx 16

Accelerator Evaluation Metrics
1. Throughput

○ Frames per second

2. Latency
○ Time to finish one frame

3. Power
4. Energy
5. Hardware Cost

○ Resource Utilization

17

https://mlperf.org/

Benchmarks:

https://mlperf.org/

Example
Hardware
Comparison

18

* Table from
https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38

19

1. Understand the basic operations

How to design your own DNN accelerator?

Common DNN Operations
● Convolution (Groupwise, Dilated, Transposed, 3D and etc.)
● ReLU
● Pooling (Average, Max)
● Fully-Connected
● Batch Normalization

20

Activation/Feature Maps
● Input images have three dimensions with RGB channels
● Intermediate data might have more channels after performing convolution
● We refer to them as feature maps

Channel Dimension

One Feature Map :

height

width

Input Image:

21

Weights/Kernels
● weights for full convolution typically have four dimensions:

○ input channels, width, height, output channels

● input channel size matches the channel dimension of input features
● output channel size specifies the channel dimension of output features

Input Channels (IC)

Input Image: Weights:

Output
Channels
(OC)

Output Channels
(OC)

Output Image:

22

3x3 Convolution - Spatially

● 3x3 Conv with No Stride, No Padding

● Weights = [[0, 1, 2], [2,2,0], [0,1,2]]

● 3x3 Conv with Stride 2, Padding 1

● Weights = [[2, 0, 1], [1,0,0], [0,1,1]]

* gif from http://deeplearning.net/software/theano_versions/dev/_images/

Output feature map

Input feature map

Input feature map

Output feature map

O
00

 = I
00

 x W
00

 + I
01

 x W
01

 + I
02

 xW
02

 + I
10

 x W
10

 + I
11

 x W
11

 + I
12

 xW
12

 + I
20

 x W
20

 + I
21

 x W
21

 + I
22

xW
22

 23

http://deeplearning.net/software/theano_versions/dev/_images/

3x3 Convolution - 3D

* gif from https://cdn-images-1.medium.com/max/800/1*q95f1mqXAVsj_VMHaOm6Sw.gif

Input
Channels

Output
Channels

24

https://cdn-images-1.medium.com/max/800/1*q95f1mqXAVsj_VMHaOm6Sw.gif

Fully-Connected Layer (FC)
● Each input activation is connected to every

output activation
● Essentially a matrix-vector multiplication

Input Activations:
IC x 1

Weights:
OC x IC

OC

IC

IC

 1

=

 1

OC

Output Activations:
OC x 1

25

ReLU Activation Function
● Implements the concept of

“Firing”
● Introduces non-linearity
● Rectified Linear Unit

○ R(z) = max(0, z)

● Not differentiable at 0

26

Batch Normalization (BN)
● Shifts and scales activations

to achieve zero-centered
distribution with unit
variance

○ Subtracts mean

○ Divides by standard deviation

* images from https://en.wikipedia.org/wiki/Normal_distribution 27

https://en.wikipedia.org/wiki/Normal_distribution

Pooling
● Downsamples

○ Takes the maximum

○ Takes the average

● Operates at each feature map independently

* images from http://cs231n.github.io/convolutional-networks/ 28

http://cs231n.github.io/convolutional-networks/

Full DNN Example: AlexNet

Top-1 Accuracy 57.1%

Top-5 Accuracy 80.2%

Model Size 61M

MACs 725M

29

Full DNN Example: ResNet-34

Top-1 Accuracy 73.3%

Top-5 Accuracy 91.3%

Model Size 83M

MACs 2G

30

31

1. Understand the basic operations

2. Analyze the workload

How to design your own DNN accelerator?

The Roofline Model

● Performance is upper bounded by the peak performance, the communication
bandwidth, and the operational intensity

● Arithmetic Intensity is the ratio of the compute to the memory traffic

Image from https://en.wikipedia.org/wiki/Roofline_model

● π - the peak compute performance
● β - the peak bandwidth
● I - the arithmetic intensity

● The attainable throughput P:

32

https://en.wikipedia.org/wiki/Roofline_model

The Roofline Model

Figure from https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf 33

https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf

34

1. Understand the basic operations

2. Analyze the workload

3. Compare different design options

How to design your own DNN accelerator?

Conv Mapping 1: Matrix-Matrix
Multiplication
● Im2Col stores in each column the necessary pixels for each kernel map

○ Duplicates input feature maps in memory

○ Restores output feature map structure

* Image from http://nmhkahn.github.io/CNN-Practice 35

http://nmhkahn.github.io/CNN-Practice

Im2col Transform

* from https://www.researchgate.net/publication/327070011_Accelerating_Deep_Neural_Networks_on_Low_Power_Heterogeneous_Architectures36

https://www.researchgate.net/publication/327070011_Accelerating_Deep_Neural_Networks_on_Low_Power_Heterogeneous_Architectures

* Image from https://github.com/numforge/laser/wiki/Convolution-optimisation-resources 37

https://github.com/numforge/laser/wiki/Convolution-optimisation-resources

Optimization: Winograd Algorithm
Winograd performs convolution in a transformed domain to reduces the total
number of multiplications.

38

Inputs:

GEMM Example:

FFT performs convolution in the
frequency domain by performing
pointwise multiplication.

Transformed
Inputs:

Result:

6 MUL 4 MUL

Conv Mapping 2: Matrix-Vector
Multiplication
● For each pixel, we can first perform Matrix-Vector Multiplication along the

input channel dimension
● Then we can use adder-tree to aggregate the sum of K x K pixels (K is the kernel

size)

Input
Activations:

Weights:

OC

IC

IC

 1

=
 1

OC

Partial Sums

Input Channels (IC)

Input Image: Weights:

Output
Channels
(OC)

1

1

1

1

1

1

1

1

1

1

Input Channels (IC)

Output Channels (OC)

Output Image:

=

39

Implementation: Systolic Array
● Systolic Array is a homogeneous network of tightly coupled data processing

units (DPUs).
● Each DPU independently computes a partial result as a function of the data

received from its upstream neighbors, stores the result within itself and passes
it downstream.

● Advantages of systolic array design:
○ Shorter wires -> lower propagation delay and lower power consumption

○ High degree of pipelining -> faster clock

○ High degree of parallelism -> high throughput

○ Simple control logic -> less design efforts

40

MAX_SIZE

M
A

X
_S

IZE

System Architecture

MAC design

C[i][j] = C[i][j] + A[i][k] * B[k][j]

i

j

B[k][0] B[k][1] B[k][2]

C
[0][0]

k

k
A[0][k]

A[1][k]

A[2][k]

C
[0][1]

C
[0][2]

C
[1][0]

C
[1][1]

C
[1][2]

C
[2][0]

C
[2][1]

C
[1][2]

* Images from http://www.telesens.co/2018/07/30/systolic-architectures/ 41

http://www.telesens.co/2018/07/30/systolic-architectures/

DNN Accelerator Design 1: Layer-based

Controllers:

Stream Buffer

Systolic Array for Convolution / Fully Connected Layer

BN

PE 1 PE 2 PE 3 PE 4 PE
N-1 PE N...

 ReLUPooling

DDR

Input Weights Output Output Output

42

DNN Accelerator Design 2: Spatially-mapped

BRAMs:

DDR

weights
& bias

Conv
3x3

BN

ReLU
Inputs

weights
& bias

BN

ReLU

Pool

weights
& bias

...

Layer1 Layer2 LayerN

Conv
1x1 FC

43

Line-Buffer Design

● Buffers inputs to perform spatial operations

● Buffers inputs for reuse to improve the arithmetic intensity

* Ritchie Zhao, et al. Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA '17) 44

Line-Buffer Execution Model
● 2x2 Max Pooling

45

Line-Buffer Execution Model
● 2x2 Max Pooling

46

Line-Buffer Execution Model
● 2x2 Max Pooling

47

● 2x2 Max Pooling

Line-Buffer Execution Model

48

Line-Buffer Execution Model
● 2x2 Max Pooling

49

50

1. Understand the basic operations

2. Analyze the workload

3. Compare different design options

4. Develop software runtime

How to design your own DNN accelerator?

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

1

51

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

2

52

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

3

53

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

4

54

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

5

55

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

6

56

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

7

57

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

8

58

HLS

59

High-Level Synthesis (HLS)
● Allows users to specify algorithm logic in high-level languages

○ No concept of clock

○ Not specifying register-transfer level activities

● HLS compiler generates RTL based on high-level algorithmic description
○ Allocation

○ Scheduling

○ Binding

● Advantages:
○ Faster development and debugging cycles

○ More structural code

○ Focuses on larger architecture design tradeoffs

60

HLS Abstraction
● High-level Languages

○ C/C++, OpenCL, GoLang

● Typical hardware mapping
○ C Function -> Verilog Module

○ Function Arguments -> Memory Ports

○ Basic Blocks (blocks without branches) -> Hardware Logic

○ Operators -> Functional Units

○ Arrays -> BRAMs

○ Control Flow Graph (CFG) -> Finite-state Machine (FSM)

● Limitations:
○ No dynamic memory allocation allowed

○ No recursion support

61

Example: Matrix Multiplication
Step 1: Partition Local Arrays

62

Step 2: Design
Systolic Array
(Implicit)

63

Step 2: Design
Systolic Array
(Explicit)

64

Step 3: Schedule
Outer Loop
Control Logic and
Memory
Accesses

* Please see the SDAccel page for detailed source code 65

https://github.com/Xilinx/SDAccel_Examples/blob/1e273f6ef01073f878a4c2b5ca4d6ad5aec7e616/getting_started/kernel_opt/systolic_array_c/src/mmult.cpp

Resources
● EE290-2: Hardware for Machine Learning

● MIT Eyeriss Tutorial

● Vivado HLS Design Hubs

● Parallel Programming for FPGAs

● Cornell ECE 5775: High-Level Digital Design Automation

● LegUp: Open-source HLS Compiler

● VTA design example

● Vivado SDAccel design examples
66

https://inst.eecs.berkeley.edu//~ee290-2/sp21/
http://eyeriss.mit.edu/tutorial.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://arxiv.org/pdf/1805.03648.pdf
https://www.csl.cornell.edu/courses/ece5775/schedule.html
http://legup.eecg.utoronto.ca/docs/4.0/index.html
https://github.com/dmlc/tvm/blob/master/vta/hardware/xilinx/src/vta.cc
https://github.com/Xilinx/SDAccel_Examples

Questions?

67

