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Overview

Like last week, this lab has two parts. For the first part, we will continue to develop our GCD
coprocessor by improving its performance. After that, we will continue the physical design flow by
performing routing.

To begin this lab, get the project files and set up your environment by typing the following com-
mands

git clone /home/ff/eecs151/labs/labb.git
cd labb

As a final note, please make sure you run make clean and remove the build folders in all your
previous lab directories to minimize the space they occupy on the file system.

Design

One way we can improve the performance of our GCD coprocessor is by parallelizing the compute.
We can do this by including multiple GCD units in our design, and routing traffic to them as they
become available.

You will find that the solution to last week’s lab (fifo.v and gcd_coprocessor.v) is included. The
test has been modified to check the total number of cycles taken by the coprocessor to complete the
tests. Run make sim-rtl to run the new testbench on the solution code. Take note of the number
of cycles that the tests take without modification, as you will need it to calculate your speedup.

Your task is to edit gcd_coprocessor.v to improve the perfomance below 225 cycles. We will do
this by using two instances of GCD.

You will find RTL that connects the datapath and controller into one module in gcd_unit.v. You
may find this useful when refactoring the gcd_coprocessor, since you will need fewer wires to place
both GCD instances.

You will also find stub code for an arbiter, which you should complete. We will use the arbiter
to route traffic to GCD units and preserve the response ordering. Most of your design can be
implemented with combinational logic, but you will need some state to remember which GCD
block contains the earliest data to preserve ordering.



EECS 151/251A ASIC Lab 5: Parallelization and Routing 2

Question 1: Design

a) Submit your code (gcd_coprocessor.v and gcd_arbiter.v) with your lab assignment.

b) How many cycles did your simulation take? What was the % speedup?

Automated Flow

In the last lab, we had only run PAR flow up until a point, in this lab, we will perform the full flow.
Routing is the final major modification performed on our design. Up until routing, Innovus uses a
quick and dirty routing engine with errors and shorts, but ignores these errors and simply tries to
get an estimate of the distance between cells and parasitics that each route will see. Once post-CTS
optimization is done, it switches to a different tool that performs careful routing and eliminates
these shorts while maintaining timing performance of our design. Routing is one of the most
computationally heavy tasks of digital IC design and can take days to complete for complicated
designs. After routing is complete, a post-Route optimization is run to ensure no timing violations
remain. Post-Route optimization typically has little freedom to move cells around, and it tries to
meet the timing constraints mostly by tweaking the length of the routings. You may see some DRC
(Design Rule Check) errors caused by the 7Tnm technology library, after routing.

First synthesize the design:

make syn

Then, simulate the synthesized design to make sure it still works:

make sim-gl-syn

Once your synthesized design passes the test, you can start the PAR flow:

make par

The PAR command will take a long time to complete, as it runs through all stages of PAR. Once it
completes, take a look at the build directory as in the previous labs. You might see additional files
compare to the syn-rundir, and that’s because the PAR flow incorporates the RC and parasitic de-
lays, in addition to the cell delays. Open build/par-rundir/gcd_coprocessor.setup.par.spef
and search for the first occurrence of D_NET. What does it say about the first net? You may find
this wiki page helpful. (thought experiment #1: get a sense of the units at the top and orders
of magnitude of the RC parasitics in the SPEF file. If we used a 5nm technology library, do you
expect the resistance to generally increase or decrease? How about the capacitance?)


https://en.wikipedia.org/wiki/Standard_Parasitic_Exchange_Format#Parasitics
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Question 2: Automated Flow

a) Check the post-Synthesis timing report
(syn_rundir/reports/final time PVT_OP63V_100C.setup_view.rpt) and post-PAR timing re-
port (par_rundir/timingReports/gcd_coprocessor_postRoute_all.tarpt). What are the crit-
ical paths of your post-PAR and post-Synthesis designs? Are they the same path? How does this
critical path compare to your single-unit critical path?

b) Iterate on your design by modifying design.yml to find a rough estimate (no need to be too
precise) for the clock period until you start running into setup errors. Given the number of
cycles it takes to complete the testbench, what is the shortest time your design can finish the
computation?

c) Open the post-CTS timing report(hammer_cts_debug/hammer cts_all.tarpt) and the post-PAR
timing report(par_rundir/timingReports/gcd_coprocessor_postRoute_all.tarpt). Find a
common path (same start and end sequential elements). What differences do you notice within
the paths?

Innovus Commands

As in the previous lab, we will look at the contents of par.tcl that HAMMER generates and follow
along using Innovus. (thought experiment #2 : open the par.tcl and search for the command
set_db add_fillers_cells. Based on the names of the cells specified by this command, what do
you think is the function of the filler cells?)

Navigate to the directory build/par-rundir and type:
innovus —-common_ui

to open Innovus shell. Next, type read_db gcd_coprocessor FINAL to load the current design
database from the latest PAR flow. This will help us to avoid rerunning the entire flow. To see
all the reporting commands, type help report* to innovus shell and read through the options
available to you.

Question 3: Innovus Reports

a) What is the area consumed by your design? What percentage of the total area does the arbiter
occupy?

b) Submit a screenshot of your setup slack histogram. Compared with the histogram you obtained
in Lab 4, does your new slack distribution support the observed performance improvements you
obtained in your coprocessor?

After you are done with the flow, it is time to simulate our newly printed post-PAR netlist. Type
the following command:

make sim-gl-par

This will use the same testbench, but will now use the post-PAR netlist of your design, back-
annotated with delays and parasitics from PAR. Make sure to adjust the CLOCK_PERIOD variable in



EECS 151/251A ASIC Lab 5: Parallelization and Routing 4

sim-gl-par.yml to match the clock period you obtained from PAR. Note, however, that the exact
clock period may not work and you may need to relax it slightly.

After running make sim-gl-par you can run power analysis using:
make power-par

Navigate to power_rundir/activePowerReports and open PVT_OP63V_100C.setup_view.rpt. Do
the power estimation numbers match your expectation?

Question 4: Trade-Offs

a) Rerun the flow using your old design. You may prevent clobbering of files in build by setting the
0BJ_DIR variable when typing make commands to something other than build for the old design.
Using the area and power values from Innovus, how does the performance improvement from the
dual-unit design compare to area occupation and power consumption increase compared to your
old design?

b) Modify your ged_coprocessor.v to take an input parameter in terms of number of clock cycles we
want our design to meet (parameter TARGET_NUMBER_OF_CYCLES) for this given testbench. Your
code should generate a low area, low power design if the number is greater than that your simple
ged_coprocessor can achieve, and it should generate the dual-unit design if it is lower. Submit
your code.

¢) (Optional) Using a rough estimate of target number of cycles versus number of units in the design,
write a code that will generate 1-8 cores depending on the performance demand. Do NOT do this
by writing out every possible case explicitly. You can limit the number of units to powers of two
(1,2,4,8) if it makes your life easier.

Acknowledgments

This lab is the result of the work of many EECS151/251 GSIs over the years including:

Written By:

e Nathan Narevsky (2014, 2017)
e Brian Zimmer (2014)

e Cem Yalcin (2019)
Modified By:

e John Wright (2015,2016)
e Ali Moin (2018)

e Arya Reais-Parsi (2019)



EECS 151/251A ASIC Lab 5: Parallelization and Routing

e Tan Nguyen (2020)
e Harrison Liew, Jingyi Xu(2020)

e Sean Huang (2021)



