
Discussion Section 1
Sean Huang
January 22, 2021



About Me
• 4th-year graduate student

– Advised by Prof. Bora Nikolic
• Working in the Berkeley Wireless 

Research Center (BWRC)
• Researching a framework for 

designing and generating PLLs for 
all purposes



About This Discussion Section
• Quick review of relevant points from each week
• Some example problems about those topics from lecture and homework



About This Discussion Section
• Quick review of relevant points from each week
• Some example problems about those topics from lecture and homework

–We’ll be doing these together!



Last-Minute Logistics
• Email me at sehuang@berkeley.edu
• Office Hours Fridays 2PM-3PM (14:00-15:00), Zoom link to be posted on the 

website
– If this time doesn’t work, let me know through email and we can try to set up 

another time

mailto:sehuang@berkeley.edu


Process and Frequency Scaling
• Transistors getting smaller, faster, cheaper



Process and Frequency Scaling

IBM 1401 (1959)



Process and Frequency Scaling



Process and Frequency Scaling



Process and Frequency Scaling

8 transistors per card!



Process and Frequency Scaling

8 transistors per card!

Each card ≈ a 7400 chip



Process and Frequency Scaling

8 transistors per card!

Each card ≈ a 7400 chip

(1964)



Process and Frequency Scaling
• Dennard Scaling

– Reducing dimensions and supply voltage yields performance improvements 
• Decreases gate capacitance (increased speed, lower power)
• Constant power density (more devices, less power per device)



Process and Frequency Scaling
• Dennard Scaling

– Reducing dimensions and supply voltage yields performance improvements 
• Decreases gate capacitance (increased speed, lower power)
• Constant power density (more devices, less power per device)

• Frequency Scaling
– Keep supply voltage constant, decrease size

• Speed increases quadratically! "#$
• Power increases cubically! %&'

• “Power wall” at 3-4GHz
– Same old tradeoff not worth it anymore



Process and Frequency Scaling
• Moore’s Law

– Still trying to cram more transistors on the 
same package (chiplets)

– More transistors = more functionality?



Process and Frequency Scaling
• Moore’s Law

– Still trying to cram more transistors on the 
same package (chiplets)

– More transistors = more functionality?
• Frequency Scaling

– Actually dead
– Worked up to the power wall, no clear way to 

get past this
– Most modern processor clock speeds pretty 

much constant across generations



The Pareto Optimal Frontier
• Tradeoffs

– Power vs. Performance
– Cost vs. (Pretty much everything)
– Time-to-market vs. Performance

• Every engineering project is balancing 
compromises
– How much should we sacrifice to meet 

specifications?
• Pareto optimal frontier

– Best possible outcome of tradeoff space



Digital Logic Design



Combinational Logic
• Output only depends on current 

input
– “Memoryless”

• Truth Table
– List all possible inputs
– Define output behavior for each

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

AND
A

B
Out



Proof By Truth Table 

C B A A|B (A|B)&C Out

0 0 0 0 0 1

0 0 1 1 0 1

0 1 0 1 0 1

0 1 1 1 0 1

1 0 0 0 0 1

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 1 0

C B A A|B !(A|B) !C Out

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 0 1 1

0 1 1 1 0 1 1

1 0 0 0 1 0 1

1 0 1 1 0 0 0

1 1 0 1 0 0 0

1 1 1 1 0 0 0



Sequential Logic
• What if we need memory?
• Registers (flip-flops) store 

information
– Output updates to equal input 

depending on load signal
• This is not instant

– Output is held steady until next 
load edge

• Clock (clk) signal is typically used 
for synchronizing registers

clk

Q

D 0 1

X 0

2

1

Time



Register Transfer Level (RTL)
• There are limitations for synchronous 

designs
– No combinational loops

• All digital designs can be 
abstracted as RTL
– Mix of combinational and 

sequential logic blocks

Not to be confused with Resistor-Transistor Logic

• HDL Languages (Verilog, VHDL)
– Use this abstraction to describe 

systems
– Follow similar division of designs

• Combinational section
• Sequential section



ASIC vs. FPGA



ASIC vs. FPGA
Field-Programmable Gate Array (FPGA)Application-Specific Integrated Circuit (ASIC)

• Customizable layout
• Control over entire chip layout (at design)
• Optimized for few applications

• Array of pre-placed general logic blocks
– Look-up tables, Registers, Multiplexer, 

Memory, DSP accelerators, Combinational 
Logic, Interconnect

• Can be reprogrammed on the fly to 
implement hardware even after manufacture



ASIC vs. FPGA
FPGAASIC

• Area-efficient
– Only place what you need

• Inflexibility
– Can only configure as far as designed to
– Usually only a few applications 

• Design turnaround time in months/years
• High Fixed Cost (NRE)

– Design and Verification
• Only have 1 shot to get the chip right
• Many hours of engineering work to create each 

iteration
• Low Manufacturing Cost

– Once design verified, can mass produce ASICs at 
very low cost
• Area optimized for application, so higher yield

• Need to sell a lot of chips to offset NRE cost!

• Generality
– Some logic blocks won’t be used for every application

• Flexibility
– Can change hardware connections on the fly
– Many potential applications

• Design turnaround time in minutes/hours
• Low Fixed Cost (NRE)

– Just need to program some existing FPGAs
– Low risk as redesign is quick

• Moderate Manufacturing Cost
– Need to source FPGAs from a third party

• Need more area for generality, more cost per die
• Less tolerance for manufacturing defects because of 

larger die
• Good for low volume production or need for 

flexible implementation



Simulation
• RTL Simulation

– Quick verification of logical function
• Used more in early stages of design to verify idea works

– Ideal behavioral models
• Gate-level Simulation

– More “real” effects taken into account (e.g. timing)
• Used in later design stages to verify actual chip still works

– Models each gate with library of parameters
• Circuit Level Simulation (SPICE, Spectre)

– Lowest level simulation, taking everything possible into account



Simulation
Simulation is your friend! 
(But also your worst enemy)

• SPICE is a tool, not an oracle
• Sometimes (rarely) the simulation is 

wrong!
– Incorrect setup
– Bad model 

• Have an idea for what to expect
– Do hand calcs before simulating
– Know what the system should do



LTSpice Installation and Tutorial


