Discussion Section 11

Sean Huang
April 16, 2021

Berkeley

Counter Blocks

- Simple to implement
- Just an add 1 every clock cycle!
- Register to remember the count

Berkeley

Counter Blocks

- Simple to implement
- Just an add 1 every clock cycle!
- Register to remember the count
- Adders are expensive
- Too general
- Do we really need an entire adder to just count by 1 each time?

Counter Blocks

- Determine next value combinationally
- Use the same tools as encoding state machines to design next count logic
- K-maps, Boolean algebra, Truth tables

a	b	c	d	a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
1	0	1	1	1	1	0	0
1	1	0	0	1	1	0	1
1	1	0	1	1	1	1	0
1	1	1	0	1	1	1	1
1	1	1	1	0	0	0	0

Terminal Count (tc)

- Common output of counters
- Flag set when either the counter reaches its maximum/minimum value or a set threshold value
- Useful for using counters in state machines

Booth Recoding

- Do partial products every 2 bits instead of 1 for fewer operations
- Traditional partial products
- 0
- A
- Higher-radix has more partial products
- 0
- A
- 2A

B_{k+1}	B_{k}	B_{k-1}	Action
0	0	0	Add 0
0	0	1	Add A
0	1	0	Add A
0	1	1	Add 2A
1	0	0	Sub 2A
1	0	1	Sub A
1	1	0	Sub A
1	1	1	Add 0

Berkeley

Booth Recoding

- Higher-radix has more partial products, which we can decompose as such
$-0=0$
$-\mathrm{A}=\mathrm{A}$
$-2 A=4 A-2 A$
$-3 \mathrm{~A}=4 \mathrm{~A}-\mathrm{A}$
- 4A is simply A shifted 2 to the left, so this is the same as adding A to the next partial sum

B_{k+1}	B_{k}	B_{k-1}	Action
0	0	0	Add 0
0	0	1	Add A
0	1	0	Add A
0	1	1	Add 2A
1	0	0	Sub 2A
1	0	1	Sub A
1	1	0	Sub A
1	1	1	Add 0

Berkeley

Booth Recoding Example

- For first bit pair, implied $B_{k-1}=0$
- First pair is $11, \mathrm{~B}_{\mathrm{k}-1}=0$
- Perform 4A - A

11[0] Sub A

- Put down -A for this partial product

Berkeley

Booth Recoding Example

- For first bit pair, implied $B_{k-1}=0$
- First pair is $11, \mathrm{~B}_{\mathrm{k}-1}=0$
- Perform 4A - A

11[0] Sub A
For first bit pair assume previous pair is 00

- Put down -A for this partial product 10[1] Sub A

010101 $\times 01101100$

- Next pair is $10, \mathrm{~B}_{\mathrm{k}-1}=1$
- Perform 4A-2A
- Put down -A (-2A + A from last partial)

Berkeley

Booth Recoding Example

- For first bit pair, implied $B_{k-1}=0$
- First pair is $11, \mathrm{~B}_{\mathrm{k}-1}=0$
- Perform 4A - A

11[0] Sub A 10[1] Sub A
01[1] Add 2A +010101
01000110111

- Next pair is $10, \mathrm{~B}_{\mathrm{k}-1}=1$
- Perform 4A-2A

010101 $\times 01101100$

- Put down -A for this partial product
- Put down -A (-2A + A from last partial)
- Last pair 01, $\mathrm{B}_{\mathrm{k}-1}=1$
- Perform +2A

Berkeley

Baugh-Wooley Multiplier

- Booth recoding does not really work well for signed multiplication

Baugh-Wooley Multiplier

- Must sign extend and subtract last partial for signed multiplication

$$
\begin{aligned}
& a_{3} a_{2} a_{1} a_{0} \\
& \times b_{3} b_{2} b_{1} b_{0} \\
& a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{2} b_{0} a_{1} b_{0} a_{0} b_{0} \\
& +a_{3} b_{1} a_{3} b_{1} a_{3} b_{1} a_{3} b_{1} a_{2} b_{1} a_{1} b_{1} a_{0} b_{1} \\
& +a_{3} b_{2} a_{3} b_{2} a_{3} b_{2} a_{2} b_{2} a_{1} b_{2} a_{0} b_{2} \\
& -a_{3} b_{3} a_{3} b_{3} a_{2} b_{3} a_{1} b_{3} a_{0} b_{3} \\
& \begin{array}{llllllll}
\mathrm{C}_{7} & \mathrm{C}_{6} & \mathrm{C}_{5} & \mathrm{C}_{4} & \mathrm{C}_{3} & \mathrm{C}_{2} & \mathrm{C}_{1} & \mathrm{C}_{0}
\end{array}
\end{aligned}
$$

Berkeley

Baugh-Wooley Multiplier

- Must sign extend and subtract last partial for signed multiplication

$$
\begin{aligned}
& a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{2} b_{0} a_{1} b_{0} a_{0} b_{0}-a_{3} a_{2} a_{1} a_{0}+\begin{array}{l}
b_{3} b_{2} b_{1} b_{0}
\end{array} \\
& a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{2} b_{0} a_{1} b_{0} a_{0} b_{0}-a_{3} a_{2} a_{1} a_{0}+\begin{array}{l}
b_{3} b_{2} b_{1} b_{0}
\end{array} \\
& a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{2} b_{0} a_{1} b_{0} a_{0} b_{0}-a_{3} a_{2} a_{1} a_{0}+\begin{array}{l}
b_{3} b_{2} b_{1} b_{0}
\end{array} \\
& a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{3} b_{0} a_{2} b_{0} a_{1} b_{0} a_{0} b_{0}-a_{3} a_{2} a_{1} a_{0}+\begin{array}{l}
b_{3} b_{2} b_{1} b_{0}
\end{array} \\
& +a_{3} b_{1} a_{3} b_{1} a_{3} b_{1} a_{3} b_{1} a_{2} b_{1} a_{1} b_{1} a_{0} b_{1} \\
& \text { +1 } \\
& +a_{3} b_{2} a_{3} b_{2} a_{3} b_{2} a_{2} b_{2} a_{1} b_{2} a_{0} b_{2} \\
& -a_{3} b_{3} a_{3} b_{3} a_{2} b_{3} a_{1} b_{3} a_{0} b_{3} \\
& \begin{array}{llllllll}
\hline \mathrm{c}_{7} & \mathrm{C}_{6} & \mathrm{C}_{5} & \mathrm{C}_{4} & \mathrm{C}_{3} & \mathrm{c}_{2} & \mathrm{c}_{1} & \mathrm{c}_{0}
\end{array}
\end{aligned}
$$

- Can remove sign extension by adding a 1 at the MSB of each partial product

Berkeley

Baugh-Wooley Multiplier

- Must sign extend and

Berkeley

Baugh-Wooley Multiplier

- Must sign extend and subtract last partial for signed multiplication
- Can remove sign extension by adding a 1 at the MSB of each partial product
- Remember to subtract this constant at the end!
- Subtraction at the end can be re-represented

Berkeley

Baugh-Wooley Multiplier

- Must sign extend and subtract last partial for signed multiplication
- Can remove sign extension by adding a 1 at the MSB of each partial product
- Remember to subtract this constant at the end!
- Subtraction at the end can
 be re-represented

Berkeley

Appendix A

Why the sign extension can be ignored in Baugh-Wooley

Baugh-Wooley Multiplier

- Consider both the case of a negative (2's complement) and positive number

Baugh-Wooley Multiplier

- Consider both the case of a negative (2's complement) and positive number
- Sign extend by a few bits

Baugh-Wooley Multiplier

- Consider both the case of a negative (2's complement) and positive number
- Sign extend by a few bits
- Add 1 at the original sign bit

1111111111111101001 +1

00000000000000001001
+1

Berkeley

Baugh-Wooley Multiplier

- In the positive case
- Extension all 0, can ignore all except inverted sign bit
- In the negative case
- 1 carries to next sign extension bit
- Carry chains all the way until all sign extension bits are 0
- Drop carry out (won't affect final sum)

Berkeley

Baugh-Wooley Multiplier

- In the positive case
- Extension all 0, can ignore all except inverted sign bit
- In the negative case
- 1 carries to next sign extension bit
- Carry chains all the way until all sign extension bits are 0
- Drop carry out (won't affect final sum)

Berkeley

