
Discussion Section 11

Sean Huang

April 16, 2021



Counter Blocks

• Simple to implement

– Just an add 1 every clock cycle!

• Register to remember the count



Counter Blocks

• Simple to implement

– Just an add 1 every clock cycle!

• Register to remember the count

• Adders are expensive

– Too general

– Do we really need an entire adder 
to just count by 1 each time?



Counter Blocks

• Determine next value 
combinationally

• Use the same tools as encoding
state machines to design next 
count logic

– K-maps, Boolean algebra, Truth 
tables

a b c d

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

a' b' c' d'

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 0 0 0



Terminal Count (tc)

• Common output of counters

• Flag set when either the counter reaches its maximum/minimum value
or a set threshold value

• Useful for using counters in state machines



Booth Recoding

• Do partial products every 2 bits instead 
of 1 for fewer operations

• Traditional partial products

– 0

– A

• Higher-radix has more partial products

– 0

– A

– 2A

– 3A

Bk+1 Bk Bk-1 Action

0 0 0 Add 0

0 0 1 Add A

0 1 0 Add A

0 1 1 Add 2A

1 0 0 Sub 2A

1 0 1 Sub A

1 1 0 Sub A

1 1 1 Add 0



Booth Recoding

• Higher-radix has more partial products, 
which we can decompose as such

– 0 = 0

– A = A

– 2A = 4A – 2A

– 3A = 4A – A

• 4A is simply A shifted 2 to the left, so 
this is the same as adding A to the next 
partial sum

Bk+1 Bk Bk-1 Action

0 0 0 Add 0

0 0 1 Add A

0 1 0 Add A

0 1 1 Add 2A

1 0 0 Sub 2A

1 0 1 Sub A

1 1 0 Sub A

1 1 1 Add 0



Booth Recoding Example

• For first bit pair, implied Bk-1=0

• First pair is 11, Bk-1=0

– Perform 4A – A

– Put down –A for this partial product

For first bit pair assume 
previous pair is 00

010101
01101100×

-010101Sub A11[0]



Booth Recoding Example

• For first bit pair, implied Bk-1=0

• First pair is 11, Bk-1=0

– Perform 4A – A

– Put down –A for this partial product

• Next pair is 10, Bk-1=1

– Perform 4A – 2A

– Put down –A (-2A + A from last partial)

For first bit pair assume 
previous pair is 00

010101
01101100×

-010101Sub A
-010101Sub A

11[0]
10[1]



Booth Recoding Example

• For first bit pair, implied Bk-1=0

• First pair is 11, Bk-1=0

– Perform 4A – A

– Put down –A for this partial product

• Next pair is 10, Bk-1=1

– Perform 4A – 2A

– Put down –A (-2A + A from last partial)

• Last pair 01, Bk-1=1

– Perform +2A

010101
01101100×

-010101Sub A

For first bit pair assume 
previous pair is 00

-010101Sub A
+010101Add 2A01[1]

11[0]
10[1]

01000110111



Baugh-Wooley Multiplier

• Booth recoding does not really work well for signed multiplication



a3a2a1a0
b3b2b1b0×

a0b0a1b0a2b0a3b0a3b0a3b0a3b0a3b0

a0b1a1b1a2b1a3b1a3b1a3b1a3b1

a0b2a1b2a2b2a3b2a3b2a3b2

a0b3a1b3a2b3a3b3a3b3

+

+
-

c0c1c2c3c4c5c6c7

Baugh-Wooley Multiplier

• Must sign extend and
subtract last partial for 
signed multiplication



Baugh-Wooley Multiplier

• Must sign extend and 
subtract last partial for 
signed multiplication

• Can remove sign extension
by adding a 1 at the MSB of 
each partial product

a3a2a1a0
b3b2b1b0×

a0b0a1b0a2b0a3b0a3b0a3b0a3b0a3b0

a0b1a1b1a2b1a3b1a3b1a3b1a3b1

a0b2a1b2a2b2a3b2a3b2a3b2

a0b3a1b3a2b3a3b3a3b3

+

+

-

c0c1c2c3c4c5c6c7

+1

+1

+1

+1



Baugh-Wooley Multiplier

• Must sign extend and 
subtract last partial for 
signed multiplication

• Can remove sign extension 
by adding a 1 at the MSB of 
each partial product

• Remember to subtract this
constant at the end!

a3a2a1a0
b3b2b1b0×

a0b0a1b0a2b0a3b0
a0b1a1b1a2b1a3b1

a0b2a1b2a2b2a3b2

a0b3a1b3a2b3a3b3

+
+
-

c0c1c2c3c4c5c6c7

1111-



Baugh-Wooley Multiplier

• Must sign extend and 
subtract last partial for 
signed multiplication

• Can remove sign extension 
by adding a 1 at the MSB of 
each partial product

• Remember to subtract this 
constant at the end!

• Subtraction at the end can
be re-represented

a3a2a1a0
b3b2b1b0×

a0b0a1b0a2b0a3b0
a0b1a1b1a2b1a3b1

a0b2a1b2a2b2a3b2

a0b3a1b3a2b3a3b3

+
+
+

c0c1c2c3c4c5c6c7

1111-

1+
2’s complement
-A = ~A + 1



Baugh-Wooley Multiplier

• Must sign extend and 
subtract last partial for 
signed multiplication

• Can remove sign extension 
by adding a 1 at the MSB of 
each partial product

• Remember to subtract this 
constant at the end!

• Subtraction at the end can 
be re-represented

a3a2a1a0
b3b2b1b0×

a0b0a1b0a2b0a3b0
a0b1a1b1a2b1a3b1

a0b2a1b2a2b2a3b2

a0b3a1b3a2b3a3b3

+
+
+

c0c1c2c3c4c5c6c7

1 1+
2’s complement
-A = ~A + 1



Appendix A

Why the sign extension can be ignored in Baugh-Wooley



Baugh-Wooley Multiplier

• Consider both the case of a 
negative (2’s complement) 
and positive number

101001

001001



Baugh-Wooley Multiplier

• Consider both the case of a 
negative (2’s complement) 
and positive number

• Sign extend by a few bits 11111111111111101001

00000000000000001001



Baugh-Wooley Multiplier

• Consider both the case of a 
negative (2’s complement) 
and positive number

• Sign extend by a few bits

• Add 1 at the original sign bit

11111111111111101001

00000000000000001001

+1

+1



Baugh-Wooley Multiplier

• In the positive case

– Extension all 0, can ignore all
except inverted sign bit

• In the negative case

– 1 carries to next sign 
extension bit

– Carry chains all the way until
all sign extension bits are 0

– Drop carry out (won’t affect 
final sum)

11111111111111001001

101001

+1

+1



Baugh-Wooley Multiplier

• In the positive case

– Extension all 0, can ignore all 
except inverted sign bit

• In the negative case

– 1 carries to next sign 
extension bit

– Carry chains all the way until 
all sign extension bits are 0

– Drop carry out (won’t affect 
final sum)

11111111000000001001

101001

+1

+1


