Discussion Section 12

Sean Huang

April 24, 2021

Berkeley

Faults

- Design Fault
- Systematic issue with design
- Affects all instances equally
- Manufacturing Fault
- Issue at manufacturing stage
- Affects particular batch of devices
- Runtime Fault
- Caused by random events (e.g. particle strike)
- Affects devices randomly depending on history of use

Failure Mechanisms

- Hot Carrier Injection
- Strong current + gate field can embed carriers into oxide
- Eventually builds up voltage, renders device unusable
- Time-Delayed Dielectric Breakdown (TDDB)
- Over time, a shorting path forms in gate oxide
- Electromigration
- Electron drift current pushes metal atoms out of position, eventually breaking connections

Error Correction Codes

- Runtime errors are unpredictable, but can guard against them
- Can introduce encoding schemes that help detect and correct errors

Error Correction Codes

- Simplest ECC is a single parity bit
- Can detect an odd number (1-bit, 3-bit, etc.) of errors
- Indicates that an error occurred, but no way to determine which bit flipped
- Can we combine parity bits?

Berkeley

Hamming Code

- Use a set of parity bits to determine the error bit
- Choose parity bits to represent different groups of bits
- Each bit of data covered by a unique combination of parity bits
- Can identify and correct a single bit of error (SECSED)

$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{~d}_{1} & \mathrm{p}_{3} & \mathrm{~d}_{2} & \mathrm{~d}_{3} & \mathrm{~d}_{4}
\end{array}
$$

Bit position number

$$
\left.\begin{array}{l}
001=1_{10} \\
011=3_{10} \\
101=5_{10} \\
111=7_{10} \\
010=2_{10} \\
011=3_{10} \\
110=6_{10} \\
111=7_{10} \\
100=4_{10} \\
101=5_{10} \\
110=6_{10} \\
111=7_{10}
\end{array}\right\} \mathrm{p}_{1}
$$

Hamming Code Example

- Index the bits starting at 1

10110110

Berkeley

Hamming Code Example

- Index the bits starting at 1
- Add parity bits to the places at powers of 2
- Parity bits would be in positions $1,2,4,8,16, \ldots$

$p_{1} p_{2} 1 p_{4} 011 p_{8} 0110$

Berkeley

Hamming Code Example

- Index the bits starting at 1
- Add parity bits to the places at powers of 2
- Parity bits would be in positions

$$
1,2,4,8,16, \ldots
$$

- Each parity bit is responsible for a different group of bits
- Each bit covers its respective power of 2 in the bit index starting from itself (slide 6)

Berkeley

Hamming Code Example

- Index the bits starting at 1
- Add parity bits to the places at powers of 2
- Parity bits would be in positions $1,2,4,8,16, \ldots$
- Each parity bit is responsible for a different group of bits
- Each bit covers its respective power of 2 in the bit index starting from itself (slide 6)

$$
\begin{array}{lll}
1 & p_{1} & p_{2} \\
0 & p_{1} & p_{4} \\
1 & p_{2} & p_{4} \\
1 & p_{1} & p_{2} \\
0 & p_{4} \\
0 & p_{1} & p_{8} \\
1 & p_{2} & p_{8} \\
1 & p_{1} & p_{2}
\end{array} p_{8}
$$

Hamming Code Example

- Index the bits starting at 1
- Add parity bits to the places at powers of 2
- Parity bits would be in positions

$$
1,2,4,8,16, \ldots
$$

- Each parity bit is responsible for a different group of bits

111001100110

- Each bit covers its respective power of 2 in the bit index starting from itself (slide 6)
- Set parity bits by taking XOR of all the data bits they cover

Berkeley

Hamming Code Example

- Identify the wrong bit using the parity bits

111000100110

Berkeley

Hamming Code Example

- Identify the wrong bit using the parity bits

111000100110

- Check all parity bits to see which ones are invalid
- p_{2} and p_{4}

$$
\begin{array}{lc}
\mathrm{p}_{1} & 1=1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \\
\mathrm{p}_{2} & 1 \neq 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \\
\mathrm{p}_{4} & 0 \neq 0 \oplus 0 \oplus 1 \oplus 0 \\
\mathrm{p}_{8} & 0=0 \oplus 1 \oplus 1 \oplus 0
\end{array}
$$

Berkeley

Hamming Code Example

- Identify the wrong bit using the parity bits
- Check all parity bits to see which ones are invalid
- p_{2} and p_{4}
- Find bit covered by these parity bits

$$
\begin{array}{lll}
1 & p_{1} & p_{2} \\
0 & p_{1} & p_{4} \\
\hline 0 & p_{2} & p_{4} \\
\hline 1 & p_{1} & p_{2}
\end{array} p_{4}
$$

Hamming Code Example

- Identify the wrong bit using the parity bits
- Check all parity bits to see which ones are invalid
- p_{2} and p_{4}
- Find bit covered by these parity bits
- Identified error bit and can correct

$$
\begin{array}{lll}
1 & p_{1} & p_{2} \\
0 & p_{1} & p_{4} \\
\hline 1 & p_{2} & p_{4} \\
\hline 1 & p_{1} & p_{2}
\end{array} p_{4}
$$

Extended Hamming Code (SECDED)

- What if there are 2 error bits?

111000100010

Berkeley

Extended Hamming Code (SECDED)

- What if there are 2 error bits?

Berkeley

Extended Hamming Code (SECDED)

- What if there are 2 error bits?
- Parity bit p_{2} would not detect this error
- This would appear like the last data bit had the bit error!
- Solution: Add one more parity bit checking entire word

1110001000101

Berkeley

Extended Hamming Code (SECDED)

- Check all parity bits to see which ones are invalid

1110001000101

- p_{4} and p_{8}
- p_{2} does not catch the error
- If this was a single error situation, detector would assume last data bit had error
- However, final parity bit check should also fail on single bit error
- Final parity bit check passes, but other parity bits fail \rightarrow double bit error!
$\mathrm{p}_{1} 1=1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0$
$\mathrm{p}_{2} \quad 1=1 \oplus 0 \oplus 1 \oplus 0 \oplus 1$
$\mathrm{p}_{4} \quad 0 \neq 0 \oplus 0 \oplus 1 \oplus 0$
$\mathrm{p}_{8} \quad 0 \neq 0 \oplus 0 \oplus 1 \oplus 0$

Berkeley

