
Discussion Section 2

Sean Huang

January 29, 2021



Hardware Description Languages (HDL)

How do we describe this?



Hardware Description Languages (HDL)

Registers!

Arithmetic!

Control!

Memory!



Hardware Description Languages (HDL)



Hardware Description Languages (HDL)

• Standard for describing and 
representing digital systems

• Contains all information necessary to 
build entire digital system 

• Apply RTL abstraction for 
combinational and state elements



Hardware Description Languages (HDL)

• Verilog

• VHDL

• SystemVerilog

• BlueSpec

• Chisel

We’ll be using this one in the class!



Digital Design in Verilog



Verilog Basics

• Not a programming language!!!
– Only the syntax is based on C for familiarity

– Circuits are not programs and follow different rules

• Learn Verilog from scratch

– Think about it from a circuit perspective

– Not ”programming a circuit”

– Writing a description



Verilog Basics

• Examples of differences

– Combinational logic 

• All combinational blocks are always running in parallel

• Output updates immediately* with input

• Just because something is assigned at a later line 
doesn’t mean it runs later!

– Sequential logic

• Many registers can update on same clock edge

* In RTL simulation. In gate-level simulation, there will be some gate delay before the output updates



Verilog Basics

• Examples of differences

– Combinational logic 

• All combinational blocks are always running in parallel

• Output updates immediately* with input

• Just because something is assigned at a later line 
doesn’t mean it runs later!

– Sequential logic

• Many registers can update on same clock edge

• Usually drive combinational blocks

• Need to be careful not to have conflicts!

* In RTL simulation. In gate-level simulation, there will be some gate delay before the output updates



Inputs, Outputs, Wires, and Regs

• Signals in Verilog are of 2 flavors
–

–

• Used in always blocks

• I/O declared at beginning of module
– Follow same signal types (wires/regs)

– Not specifying implies 

– Inputs are wires
• doesn’t really make sense

• Internal wires and regs are declared after 
I/O
– Not visible outside module



Wire vs. Reg

wire
• Continuous assignment

• Interconnections between modules

reg
• These are not registers themselves!!!

• Signals in blocks must be reg

• Actual registers are made by 
instantiating modules from the 
register library



The always @ block

• Block delineated by 
keywords

• The indicates the sensitivity list of the 
block

– Signals listed within the parentheses are those 
the block is sensitive to

– Indicates assignments in block take 
effect when signals in sensitivity list update
• Otherwise, signals in block hold last 

output

– Hardware is defined to only depend on signals 
in sensitivity list



The always @ block - Combinational Logic

• Make sure all dependent signals are in 
sensitivity list

– Signals on right side of assignment

– Signals in conditional statements

• Missing sensitivities can result in unexpected 
behavior!

•

– Sensitivity list inferred from contents of block

– Use this when using blocks for 
combinational logic



The always @ block - Sequential Logic, Part 1

• The classic way to denote a register

• sensitivity

– Sensitive to rising edge of 

• Output updates only at 0→1 transition of 

• Assigns Q = D when this condition is met



The always @ block - Sequential Logic, Part 2

• Registers are common subcircuits

– Pretty much digital system in itself

• Define dedicated register module

– Has I/O like higher level modules

– Same block definition as 
before

• In this case there is a synchronous 
reset

• Clearer where registers are in top 
level design

Notice this parameter 
definition 



The always @ block - Sequential Logic, Part 2

• Register clearly instantiated

– Cleaner than having blocks everywhere

– Design kits may have predefined register standard cells

Overwrite N=1 from module definition with new bit width 



Multiple Assignments

• Cannot continuously assign wire to 
two other wires

• Two wires driving 1 wire?

– Ambiguous what final value will be

– No “half values” in digital!

• Can assign different values to reg at 
different points in block

• Last value overrides all previous 
values

• Can be used to set default values for 
registers



Loops

• Not a C for loop!

– Not describing iterations of logic 
operation

– Shorthand for repeating the same 
logic circuit in the design

• Looping operations requires you to 
design the control logic yourself

Equivalent to



Simulation in Verilog



Verilog Simulation

• Slightly more programmatic than the hardware description itself

• Can use some more software-like constructs

– for loops

– Subroutine calls

– Print statements



Verilog Simulation

• Testbenches

– Instance your module as Device Under Test (DUT)

– Use blocks to make test vectors

• blocks

– “snapshots” of simulation

– Separate with delay timesteps between timeframes

• Denoted with #N timesteps



Verilog Simulation

• Here’s simple testbench for 4 
test inputs to an OAI circuit



Verilog Simulation

• Here’s simple testbench for 4 
inputs to an OAI circuit

• Outputs can be visualized as 
a waveform



Useful Commands

•

– Prints values to console. Executed at end of current 
cycle (i.e. “simulation time”)

•

– Get current simulation time

•

– Similar to but not guaranteed to execute at 
end of cycle 

•

– End simulation



Format String



Printing Every Cycle

outputs



Monitoring: An Alternative

outputs



Simulators

• Synopsys VCS
– Used for ASIC Lab

– On INST machines

• ModelSim-Altera
– On INST machines

– Educational Version download available for Windows

• Vivado Simulator
– Used in FPGA Lab

– On INST machines

– Free version available for Windows and Linux (will need VM for Mac)

• …and many more!



Simulators

• EDA Playground (https://www.edaplayground.com/)

– HIGHLY recommended for this homework!

– Free web-based simulator

• Can use a variety of simulation engines for many different HDLs

– Built-in waveform viewer

– Using proprietary simulators (e.g. VCS, Xcelium, etc.) requires registration

https://www.edaplayground.com/


EDA Playground Example

• Exhaustively test a 4-bit wrap-around counter

– Count from 0000 to 1111

– Overflow wraps around to 0000 at next cycle



EDA Playground Example – For Loop



EDA Playground Example – Task 



Questions?


