
Discussion Section 3
Sean Huang
January 29, 2021

FPGAs: Building Blocks of Logic

FPGA Structure
• Array of ”Logic Cells” and

interconnect
• What are “Logic Cells” exactly?

– How to implement every possible
logic function in finite space?

– How to adapt to any N-bit wide
input?

Truth Tables
• Completely characterizes logic

function
– Any N-input function requires 2N

rows to fully define
• Map input to output for all possible

inputs
– Could we represent logic functions

this way?

c b a out

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Look-Up Tables (LUTs)
• Like a hardware truth table
• Map each input to corresponding

output
c b a out

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Look-Up Tables (LUTs)
• Like a hardware truth table
• Map each input to corresponding

output
• Easy way to implement

– Use mux with programmable latches
on each input

– Program Latch to correspond to
expected output

– Select output with inputs to LUT

c b a out

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Proto-FPGA
• Array of LUTs and interconnect
• Here’s a proto-FPGA of 3-input

LUTs
– Can perform any combination of 3-

input logic functions!
• What if we want to have a 4-input

function?

Building Bigger LUTs
• Consider a 4-input LUT

– This one is a 4-input XOR
• How to build this out of 3 input

LUTs?

d c b a out

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

d c b a out

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

Building Bigger LUTs
• Consider a 4-input LUT

– This one is a 4-input XOR
• How to build this out of 3 input

LUTs?
• Notice how the LUT depends on d

– Can split into d=0 and d=1 halves
– abc inputs look identical!

d = 0

d = 1

Building Bigger LUTs
• Consider a 4-input LUT

– This one is a 4-input XOR
• How to build this out of 3 input

LUTs?
• Notice how the LUT depends on d

– Can split into d=0 and d=1 halves
– abc inputs look identical!

c b a out

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

c b a out

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

a

b

c
out

d

0

1

LUT Caveats
• Can implement any logic function as a LUT

– Just because you can doesn’t mean you should
• Ex: 64-inputs require 264=1.84x1019 lines of LUT!

– Bit width common in arithmetic or encoders
• Might use LUTs for sub-blocks

– LUT not most efficient way to implement a function
• But it is very straightforward

Boolean Algebra

Functional Completeness
• How would you build an XOR gate out of only ANDs and ORs?

Functional Completeness
• How would you build an XOR gate out of only ANDs and ORs?

– Spoiler: You can’t
• Need a NOT for functional completeness
• Are NANDs functionally complete? Can you make an XOR out of them?

Functional Completeness
• How would you build an XOR gate out of only

ANDs and ORs?
– Spoiler: You can’t

• Need a NOT for functional completeness
• Are NANDs functionally complete? Can you make

an XOR out of them?
• What about NORs?

Functional Completeness
• How would you build an XOR gate out of only

ANDs and ORs?
– Spoiler: You can’t

• Need a NOT for functional completeness
• Are NANDs functionally complete? Can you make

an XOR out of them?
• What about NORs?

Logic as Math
• Basic operators

– AND (*, ∧)
– OR (+, ∨)
– NOT(¬, ‘, !, ~, or “bar” – ex: $𝑎)

• Order of Operations
– Similar to arithmetic, AND (*) is done before OR (+), NOT takes precedence

over AND
• 𝑎!𝑏 + 𝑏𝑐 = 𝑎! & 𝑏 + 𝑏 & 𝑐

• Laws and Properties
– Boolean Algebra has its own set of laws and properties to simply

expressions

Properties
• Properties listed in Lecture 6 Slides

– Useful for transforming expressions to be easier to simplify
• Here is a selection of some useful ones

𝑎𝑏 = 𝑏𝑐 𝑎 + 𝑏 = 𝑏 + 𝑎 𝑎′′ = 𝑎

𝑎𝑏 𝑐 = 𝑎(𝑏𝑐) 𝑎 + 𝑏 + 𝑐 = 𝑎 + (𝑏 + 𝑐) 𝑎) 0 = 0 𝑎 + 1 = 1

𝑎 𝑏 + 𝑐 = 𝑎𝑏 + 𝑎𝑐 𝑎 + 𝑏𝑐 = 𝑎 + 𝑏 (𝑎 + 𝑐) 𝑎) 1 = 𝑎 𝑎 + 0 = 𝑎

(𝑎 + 𝑏 +⋯+ 𝑐)′ = 𝑎!𝑏′⋯ 𝑐′ (𝑎𝑏⋯𝑐)′ = 𝑎′ + 𝑏′ + ⋯+ 𝑐′ 𝑎) 𝑎 = 𝑎 𝑎 + 𝑎 = 𝑎

𝑎𝑏′ + 𝑎𝑏 = 𝑎 𝑏′ + 𝑏 = 𝑎 1 = 𝑎 𝑎) -𝑎 = 0 𝑎 + -𝑎 = 1

Canonical Forms
• Every Boolean expression can be expressed in one of these forms
• Sum-of-Products (SOP)

– Sum (OR) of series of products (AND)
• Ex: 𝑎!𝑏 + 𝑏𝑐 + 𝑎𝑐𝑑 + 𝑐!𝑑 + 𝑏!𝑑
• Each product sometimes referred to as a “minterm” if SOP in most simplified form

• Product-of-Sums (POS)
– Product (AND) of series of sums (OR)

• Ex: 𝑎 + 𝑏 𝑏 + 𝑐 𝑎 + 𝑐! + 𝑑 𝑏 + 𝑑
• Each sum sometimes referred to as a “maxterm” if POS in most simplified form

• Can use different methods to simplify down to one of these two forms
– Karnaugh maps (K-maps) are one such method

Karnaugh Maps
• Visualize Truth Table

– Keep “adjacent” terms nearby
• Adjacency means only 1 bit changes

between them
– Wikipedia has a decent illustration of

adjacency
• https://en.wikipedia.org/wiki/Karnaugh_map#Karnaugh_map

• Can use this to find either SOP or
POS representation of function

0

1

0

1

1

0

1

0

0

1

0

1

1

0

1

0

https://en.wikipedia.org/wiki/Karnaugh_map

Karnaugh Maps
• Visualize Truth Table

– Keep “adjacent” terms nearby
• Adjacency means only 1 bit changes

between them
– Wikipedia has a decent illustration of

adjacency
• https://en.wikipedia.org/wiki/Karnaugh_map#Karnaugh_map

• Can use this to find either SOP or
POS representation of function

https://en.wikipedia.org/wiki/Karnaugh_map

Gray Code

0

1

0

1

1

0

1

0

0

1

0

1

1

0

1

0

• Each adjacent term in sequence only
differs by 1 bit
– 00, 01, 11, 10

• Mapping truth table by Gray code
leads to K-map adjacency
– Each term differs in input by only 1

bit from its neighbors

Gray Code
• Each adjacent term in sequence only

differs by 1 bit
– 00, 01, 11, 10

• Mapping truth table by Gray code
leads to K-map adjacency
– Each term differs in input by only 1

bit from its neighbors
• Can also think of it like the K-map

is tiled on all sides
– Edges “wrap around”

• Like a Pac-man stage

0
1
0
1

1
0
1
0

0
1
0
1

1
0
1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1
0
1

1
0
1
0

0
1

1
0

0
1
0
1

1
0
1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

1
0

