Discussion Section 3

Sean Huang

January 29, 2021

Berkeley

FPGAs: Building Blocks of Logic

Berkeley

FPGA Structure

- Array of "Logic Cells" and interconnect
- What are "Logic Cells" exactly?
- How to implement every possible logic function in finite space?
- How to adapt to any N-bit wide input?

Berkeley

Truth Tables

- Completely characterizes logic function
- Any N -input function requires 2^{N} rows to fully define
- Map input to output for all possible inputs
- Could we represent logic functions this way?

c	b	a	out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Berkeley

Look-Up Tables (LUTs)

- Like a hardware truth table
- Map each input to corresponding output

c	b	a	out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Berkeley

Look-Up Tables (LUTs)

- Like a hardware truth table
- Map each input to corresponding output
- Easy way to implement
- Use mux with programmable latches on each input
- Program Latch to correspond to expected output
- Select output with inputs to LUT

c	b	a	out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Berkeley

Proto-FPGA

- Array of LUTs and interconnect
- Here's a proto-FPGA of 3-input LUTs
- Can perform any combination of 3input logic functions!
- What if we want to have a 4-input function?

Berkeley

Building Bigger LUTs

- Consider a 4-input LUT
- This one is a 4-input XOR
- How to build this out of 3 input LUTs?

d	c	b	a	out
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Building Bigger LUTs

- Consider a 4-input LUT
- This one is a 4-input XOR
- How to build this out of 3 input LUTs?
- Notice how the LUT depends on d
- Can split into $d=0$ and $d=1$ halves
- abc inputs look identical!

	d	c	b	a	out
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	1
	0	0	1	1	0
	0	1	0	0	1
	0	1	0	1	0
	0	1	1	0	0
	0	1	1	1	1
	1	0	0	0	1
	1	0	0	1	0
	1	0	1	0	0
	1	0	1	1	1
	1	1	0	0	0
	1	1	0	1	1
	1	1	1	0	1
	1	1	1	1	0

Building Bigger LUTs

- Consider a 4-input LUT
- This one is a 4-input XOR
- How to build this out of 3 input LUTs?
- Notice how the LUT depends on d
- Can split into $d=0$ and $d=1$ halves
- abc inputs look identical!

LUT Caveats

- Can implement any logic function as a LUT
- Just because you can doesn't mean you should
- Ex: 64 -inputs require $2^{64}=1.84 \times 10^{19}$ lines of LUT!
- Bit width common in arithmetic or encoders
- Might use LUTs for sub-blocks
- LUT not most efficient way to implement a function
- But it is very straightforward

Boolean Algebra

Berkeley

Functional Completeness

- How would you build an XOR gate out of only ANDs and ORs?

Functional Completeness

- How would you build an XOR gate out of only ANDs and ORs?
- Spoiler: You can’t
- Need a NOT for functional completeness
- Are NANDs functionally complete? Can you make an XOR out of them?

Functional Completeness

- How would you build an XOR gate out of only ANDs and ORs?
- Spoiler: You can't
- Need a NOT for functional completeness

- Are NANDs functionally complete? Can you make an XOR out of them?
- What about NORs?

Functional Completeness

- How would you build an XOR gate out of only ANDs and ORs?
- Spoiler: You can't
- Need a NOT for functional completeness

- Are NANDs functionally complete? Can you make an XOR out of them?
- What about NORs?

Berkeley

Logic as Math

- Basic operators
- AND (*, ^)
- OR (+, v)
- NOT(ᄀ, ‘, !, ~, or "bar" - ex: \bar{a})
- Order of Operations
- Similar to arithmetic, AND (*) is done before OR (+), NOT takes precedence over AND
- $a^{\prime} b+b c=\left(\left(a^{\prime}\right) \cdot b\right)+(b \cdot c)$
- Laws and Properties
- Boolean Algebra has its own set of laws and properties to simply expressions

Berkeley

Properties

- Properties listed in Lecture 6 Slides
- Useful for transforming expressions to be easier to simplify
- Here is a selection of some useful ones

$a b=b c$	$a+b=b+a$	$a^{\prime \prime}=a$	
$(a b) c=a(b c)$	$(a+b)+c=a+(b+c)$	$a \cdot 0=0$	$a+1=1$
$a(b+c)=a b+a c$	$a+b c=(a+b)(a+c)$	$a \cdot 1=a$	$a+0=a$
$(a+b+\cdots+c)^{\prime}=a^{\prime} b^{\prime} \cdots c^{\prime}$	$(a b \cdots c)^{\prime}=a^{\prime}+b^{\prime}+\cdots+c^{\prime}$	$a \cdot a=a$	$a+a=a$
$a b^{\prime}+a b=a\left(b^{\prime}+b\right)=a(1)=a$	$a \cdot \bar{a}=0$	$a+\bar{a}=1$	

Berkeley

Canonical Forms

- Every Boolean expression can be expressed in one of these forms
- Sum-of-Products (SOP)
- Sum (OR) of series of products (AND)
- Ex: $a^{\prime} b+b c+a c d+c^{\prime} d+b^{\prime} d$
- Each product sometimes referred to as a "minterm" if SOP in most simplified form
- Product-of-Sums (POS)
- Product (AND) of series of sums (OR)
- Ex: $(a+b)(b+c)\left(a+c^{\prime}+d\right)(b+d)$
- Each sum sometimes referred to as a "maxterm" if POS in most simplified form
- Can use different methods to simplify down to one of these two forms
- Karnaugh maps (K-maps) are one such method

Berkeley

Karnaugh Maps

- Visualize Truth Table
- Keep "adjacent" terms nearby
- Adjacency means only 1 bit changes between them
- Wikipedia has a decent illustration of adjacency
https://en.wikipedia.org/wiki/Karnaugh map\#Karnaugh map
- Can use this to find either SOP or POS representation of function

Karnaugh Maps

- Visualize Truth Table
- Keep "adjacent" terms nearby
- Adjacency means only 1 bit changes between them
- Wikipedia has a decent illustration of adjacency

- https://en.wikipedia.org/wiki/Karnaugh map\#Karnaugh map
- Can use this to find either SOP or POS representation of function

Berkeley

Gray Code

- Each adjacent term in sequence only differs by 1 bit
- 00, 01, 11, 10
- Mapping truth table by Gray code leads to K-map adjacency
- Each term differs in input by only 1 bit from its neighbors

$A^{\prime} B$				
		A'B	AB	A'B
$C^{\prime} \mathrm{D}^{\prime}$	0	1	0	1
C'D	1	0	1	0
CD	0	1	0	1
CD'	1	0	1	0

Berkeley

Gray Code

- Each adjacent term in sequence only differs by 1 bit
- 00, 01, 11, 10
- Mapping truth table by Gray code leads to K-map adjacency
- Each term differs in input by only 1 bit from its neighbors
- Can also think of it like the K-map is tiled on all sides
- Edges "wrap around"
- Like a Pac-man stage

0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0

Berkeley

