Discussion Section 3

Sean Huang January 29, 2021

FPGAs: Building Blocks of Logic

FPGA Structure

- Array of "Logic Cells" and interconnect
- What are "Logic Cells" exactly?
 - How to implement every possible logic function in finite space?
 - How to adapt to any N-bit wide input?

Truth Tables

- Completely characterizes logic function
 - Any N-input function requires 2^N rows to fully define
- Map input to output for all possible inputs
 - Could we represent logic functions this way?

С	b	а	out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Look-Up Tables (LUTs)

- Like a hardware truth table
- Map each input to corresponding output

2	b	а	out		
0	0	0	0		
0	0	1	1		
0	1	0	1	a ———	
0	1	1	0	b ———	LUT
1	0	0	1	с ———	
1	0	1	0	-	
1	1	0	0		
1	1	1	1		

— out

Look-Up Tables (LUTs)

- Like a hardware truth table
- Map each input to corresponding output
- Easy way to implement
 - Use mux with programmable latches on each input
 - Program Latch to correspond to expected output
 - Select output with inputs to LUT

С	b	а	out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Proto-FPGA

- Array of LUTs and interconnect
- Here's a proto-FPGA of 3-input LUTs
 - Can perform any combination of 3input logic functions!
- What if we want to have a 4-input function?

Building Bigger LUTs

- Consider a 4-input LUT
 This one is a 4-input XOR
- How to build this out of 3 input LUTs?

d	С	b	а	out
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Building Bigger LUTs

- Consider a 4-input LUT
 This one is a 4-input XOR
- How to build this out of 3 input LUTs?
- Notice how the LUT depends on d
 - Can split into d=0 and d=1 halves
 - abc inputs look identical!

Berkelev

	d	С	b	а	out
ſ	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	1
d = 0	0	0	1	1	0
u - 0	0	1	0	0	1
	0	1	0	1	0
	0	1	1	0	0
	0	1	1	1	1
(1	0	0	0	1
	1	0	0	1	0
	1	0	1	0	0
d=1	1	0	1	1	1
d = 1 🖌	1	1	0	0	0
	1	1	0	1	1
	1	1	1	0	1
	1	1	1	1	0

Building Bigger LUTs

- Consider a 4-input LUT
 This one is a 4-input XOR
- How to build this out of 3 input LUTs?
- Notice how the LUT depends on d
 - Can split into d=0 and d=1 halves
 - abc inputs look identical!

Rerkelev

LUT Caveats

- <u>Can</u> implement any logic function as a LUT
 - Just because you can doesn't mean you should
- Ex: 64-inputs require 2⁶⁴=1.84x10¹⁹ lines of LUT!
 - Bit width common in arithmetic or encoders
 - Might use LUTs for sub-blocks
 - LUT not most efficient way to implement a function
 - But it is very straightforward

Boolean Algebra

• How would you build an XOR gate out of only ANDs and ORs?

- How would you build an XOR gate out of only ANDs and ORs?
 - Spoiler: You can't
- Need a NOT for functional completeness
- Are NANDs functionally complete? Can you make an XOR out of them?

- How would you build an XOR gate out of only ANDs and ORs?
 - Spoiler: You can't
- Need a NOT for functional completeness
- Are NANDs functionally complete? Can you make an XOR out of them?
- What about NORs?

- How would you build an XOR gate out of only ANDs and ORs?
 - Spoiler: You can't
- Need a NOT for functional completeness
- Are NANDs functionally complete? Can you make an XOR out of them?
- What about NORs?

Logic as Math

- Basic operators
 - AND (*, ∧)
 - − OR (+, ∨)
 - NOT(\neg , ', !, ~, or "bar" ex: \overline{a})
- Order of Operations
 - Similar to arithmetic, AND (*) is done before OR (+), NOT takes precedence over AND
 - $a'b + bc = ((a') \cdot b) + (b \cdot c)$
- Laws and Properties
 - Boolean Algebra has its own set of laws and properties to simply expressions

Properties

- Properties listed in Lecture 6 Slides
 - Useful for transforming expressions to be easier to simplify
- Here is a selection of some useful ones

ab = bc	a + b = b + a	$a^{\prime\prime} = a$	
(ab)c = a(bc)	(a+b) + c = a + (b+c)	$a \cdot 0 = 0$	a + 1 = 1
a(b+c) = ab + ac	a + bc = (a + b)(a + c)	$a \cdot 1 = a$	a + 0 = a
$(a+b+\cdots+c)'=a'b'\cdots c'$	$(ab\cdots c)' = a' + b' + \dots + c'$	$a \cdot a = a$	a + a = a
ab' + ab = a(b)	$a \cdot \overline{a} = 0$	$a + \overline{a} = 1$	

Canonical Forms

- Every Boolean expression can be expressed in one of these forms
- Sum-of-Products (SOP)
 - Sum (OR) of series of products (AND)
 - Ex: a'b + bc + acd + c'd + b'd
 - Each product sometimes referred to as a "minterm" if SOP in most simplified form
- Product-of-Sums (POS)
 - Product (AND) of series of sums (OR)
 - Ex: (a+b)(b+c)(a+c'+d)(b+d)
 - Each sum sometimes referred to as a "maxterm" if POS in most simplified form
- Can use different methods to simplify down to one of these two forms
 - Karnaugh maps (K-maps) are one such method

Karnaugh Maps

- Visualize Truth Table
 - Keep "adjacent" terms nearby
 - Adjacency means only 1 bit changes between them
 - Wikipedia has a decent illustration of adjacency
 - <u>https://en.wikipedia.org/wiki/Karnaugh_map#Karnaugh_map</u>
- Can use this to find either SOP or POS representation of function

Karnaugh Maps

- Visualize Truth Table
 - Keep "adjacent" terms nearby
 - Adjacency means only 1 bit changes between them
 - Wikipedia has a decent illustration of adjacency
 - <u>https://en.wikipedia.org/wiki/Karnaugh_map#Karnaugh_map</u>
- Can use this to find either SOP or POS representation of function

Gray Code

- Each adjacent term in sequence only differs by 1 bit
 - 00, 01, 11, 10
- Mapping truth table by Gray code leads to K-map adjacency
 - Each term differs in input by only 1 bit from its neighbors

Gray Code

- Each adjacent term in sequence only differs by 1 bit
 - 00, 01, 11, 10
- Mapping truth table by Gray code leads to K-map adjacency
 - Each term differs in input by only 1 bit from its neighbors
- Can also think of it like the K-map is tiled on all sides
 - Edges "wrap around"
 - Like a Pac-man stage

