
Discussion Section 4
Sean Huang
February 12, 2021

Karnaugh Map Example
Simplify this expression:

𝑜𝑢𝑡 = 𝑎!𝑏!𝑐!𝑑! + 𝑎!𝑏!𝑐!𝑑 + 𝑎!𝑏!𝑐𝑑! + 𝑎!𝑏𝑐!𝑑! +
+𝑎!𝑏𝑐!𝑑 + 𝑎!𝑏𝑐𝑑 + 𝑎𝑏!𝑐!𝑑! + 𝑎𝑏!𝑐𝑑!
+𝑎𝑏!𝑐𝑑 + 𝑎𝑏𝑐!𝑑 + 𝑎𝑏𝑐𝑑! + 𝑎𝑏𝑐𝑑

Karnaugh Map Example
Simplify this expression:

𝑜𝑢𝑡 = 𝑎!𝑏!𝑐!𝑑! + 𝑎!𝑏!𝑐!𝑑 + 𝑎!𝑏!𝑐𝑑! + 𝑎!𝑏𝑐!𝑑! +
+𝑎!𝑏𝑐!𝑑 + 𝑎!𝑏𝑐𝑑 + 𝑎𝑏!𝑐!𝑑! + 𝑎𝑏!𝑐𝑑!
+𝑎𝑏!𝑐𝑑 + 𝑎𝑏𝑐!𝑑 + 𝑎𝑏𝑐𝑑! + 𝑎𝑏𝑐𝑑

a b c d out

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Karnaugh Map Example
Simplify this expression:

𝑜𝑢𝑡 = 𝑎!𝑏!𝑐!𝑑! + 𝑎!𝑏!𝑐!𝑑 + 𝑎!𝑏!𝑐𝑑! + 𝑎!𝑏𝑐!𝑑! +
+𝑎!𝑏𝑐!𝑑 + 𝑎!𝑏𝑐𝑑 + 𝑎𝑏!𝑐!𝑑! + 𝑎𝑏!𝑐𝑑!
+𝑎𝑏!𝑐𝑑 + 𝑎𝑏𝑐!𝑑 + 𝑎𝑏𝑐𝑑! + 𝑎𝑏𝑐𝑑

a b c d out

0 0 0 0 0 1

1 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 0

4 0 1 0 0 1

5 0 1 0 1 1

6 0 1 1 0 0

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 0

10 1 0 1 0 1

11 1 0 1 1 1

12 1 1 0 0 0

13 1 1 0 1 1

14 1 1 1 0 1

15 1 1 1 1 1

Karnaugh Map Example

0

4

8

1

5

9

3

7

11

2

6

• Truth Table maps to K-map
– Can fill out K-map “in order”

• Squares in K-map not in same order as TT
– Gray code sequencing inputs reorders terms

• Each box containing a 1 is a minterm

10

12 13 15 14

Karnaugh Map Example

1

1

0

1

1

1

1

0

0

1

1

1

1

0

1

1

𝑜𝑢𝑡 = 𝑎!𝑏!𝑐!𝑑! + 𝑎!𝑏!𝑐!𝑑 + 𝑎!𝑏!𝑐𝑑! + 𝑎!𝑏𝑐!𝑑!

+𝑎!𝑏𝑐!𝑑 + 𝑎!𝑏𝑐𝑑 + 𝑎𝑏!𝑐!𝑑! + 𝑎𝑏!𝑐𝑑!

+𝑎𝑏!𝑐𝑑 + 𝑎𝑏𝑐!𝑑 + 𝑎𝑏𝑐𝑑! + 𝑎𝑏𝑐𝑑

0 1 2 4

5 7 8 10

11 13 14 15

Karnaugh Map Example

1

1

0

1

1

1

1

0

0

1

1

1

1

0

1

1

• Group minterms together
– Groups also called implicants
– Each group is a simplified product term

omitting one or more variable
– Implicant groups can wrap around

edges/corners
• 𝑜𝑢𝑡 = 𝑏𝑑 + 𝑏!𝑑! + 𝑎𝑐 + 𝑎!𝑐!

• When all minterms are grouped and no
bigger groups can be made, they are
known as prime implicants

Karnaugh Maps and Glitches

1

0

0

0

0

1

1

1

• Prime implicants that do not overlap are
called essential prime implicants
– Both terms cannot be true at the same

time
• Output works fine if both AND gates are

identical and arrive at OR at the same
time
– This is unrealistic. Real gates have varying

delays

𝑜𝑢𝑡 = 𝑏!𝑐! + 𝑎𝑐

Karnaugh Maps and Glitches

1

0

0

0

0

1

1

1

• Prime implicants that do not overlap are
called essential prime implicants
– Both terms cannot be true at the same

time
• Creates possibility of a glitch

– Also known as a static hazard
• If one term evaluates to false before the

other term evaluates to true, output can
momentarily glitch

𝑜𝑢𝑡 = 𝑏!𝑐! + 𝑎𝑐

Karnaugh Maps and Glitches

1

0

0

0

0

1

1

1

• Prime implicants that do not overlap are
called essential prime implicants
– Both terms cannot be true at the same

time
• Creates possibility of a glitch

– Also known as a static hazard
• If one term evaluates to false before the

other term evaluates to true, output can
momentarily glitch

• Can avoid with redundant terms
– Output “covered” by additional term

𝑜𝑢𝑡 = 𝑏!𝑐! + 𝑎𝑐 + 𝑎𝑏′

Finite State Machines

Finite State Machines
• Simple automata
• All sequential systems can be

modeled as an FSM
• Useful abstraction of stateful

behavior
• Represented with State Transition

Diagrams
– Describes trajectory of state

machine depending on inputs
– Usually traverse an edge every clock

cycle

Simple Example (Traffic Lights)
• Simple timer-based traffic light

system
• Each light is a particular state

– Light changes once timer runs out
• Each edge depends on same input

signal
– Which state is next depends on

current state

Less Simple Example (Traffic Lights)
• Reset to a flashing red light until

reset goes low again
– Add “off” state, and new “red_rst”

state
– New states flash back and forth until

reset goes low
– All other states reset to “red_rst”

state until ready to continue normal
operation

Implementing FSMs
• FSMs implemented in hardware with registers and logic
• How to keep track of current state?
• Could store a number in the registers

– What format to use?
• Binary
• One-hot
• Gray coding
• Something else?

Binary Encoding
• Probably first idea you come to
• Encode each state as binary number
• Next state depends on current state

code and inputs
• Code efficiently uses registers 🙂

– Only need log"(N_States) bits
• Per-bit logic can get complicated 🙁

– State transitions may involve
changing several bits

– Outputs may need to be decoded

Gray Code Encoding
• Modification on Binary Encoding
• Only allow one bit to change at a

time
• Simpler per-bit logic 🙂

– Basically just decide which bit to
change at each edge

Gray Code Encoding
• Modification on Binary Encoding
• Only allow one bit to change at a

time
• Simpler per-bit logic 🙂

– Basically just decide which bit to
change at each edge

• Not all state diagrams work 🙁
– Some state changes cannot be Gray

coded

Tw
o-bit t

ran
sit

ion!

One-Hot Encoding
• Only 1 wire high at a time
• Each wire represents a state
• Easier to design and debug 🙂

– Can design per-bit logic in isolation
– Each register responsible for a state,

easy to find current state from
waveform/log

– Maps well to FPGAs
• Not register efficient 🙁

– Per-bit logic can get even messier
than binary

– Needs N_States registers/wires

Counters and State Machines
• Divide-by-4 Clock Divider

– Output toggles every 4 clock cycles
– Many linear state transitions

• Do we really need a state for all the
counting steps?

Counters and State Machines
• Replace counting states with a

counter
– Counter sets flag when finished

counting
• Counters and Accumulators

commonly used with state
machines
– Repetitive and linear steps can be

delegated to a counter/accumulator

