
Discussion Section 6

Sean Huang

February 19, 2021

Bit-Serial Interface

• Accepts packets coming in with a specific format

• Design block that performs two checks

– Destination check: Make sure our addr is the dst addr

• Match dst addr field with local addr

– Checksum: Make sure packet is not corrupted

• If packet is fine, sum of all the previous bytes should be complement of checksum

– This was an error in the homework (I said bit-wise instead of byte-wise)

– Sum should have been done 2’s complement instead of 1’s complement

• Processing should be done in-stream (i.e. don’t buffer the whole packet)

Bit-Serial Interface

• Make a “story” out of the specification

1. Packet comes in

2. Wait for dst field…

3. Check against local addr

1. If check fails, wait until end of packet then repeat

4. Wait for end of packet…

5. Check against checksum

6. Repeat

Bit-Serial Interface

• Make a “story” out of the specification

1. Packet comes in

2. Wait for dst field…

3. Check against local addr

1. If check fails, wait until end of packet then repeat

4. Wait for end of packet…

5. Check against checksum

6. Repeat

Design performs different
actions in these steps, so
these can be distinct states

This can be an IDLE state

Return to IDLE

Bit-Serial Interface

• Make a “story” out of the specification

1. Packet comes in

2. Wait for dst field…

3. Check against local addr

1. If check fails, wait until end of packet then repeat

4. Wait for end of packet…

5. Check against checksum

6. Repeat

Both of these steps involve
just waiting, but for different
periods of time, so can be
the same state

This “mini-step” is also just a wait
step so this can also reuse the same
state as the other waiting steps

Bit-Serial Interface

• List of states

1. IDLE (Waiting for packet to arrive)

2. RECEIVE_BITS (Waiting until relevant field arrives)

3. VERIFY_DST (Perform dst check)

4. VERIFY_CHKSUM (Perform checksum check)

Bit-Serial Interface

State Transitions

State Transitions

IDLE State

• Actions:

– Wait for new packet to arrive

• Outputs:

– Both valid signals should be low

– packet_match and check_match low

RECEIVE_BITS State

• Actions:

– Start counting bits from packet as they come in

• Begin summing bytes of the packet for the checksum check later

– Move to packet check after finished receiving src field

– Move to checksum check after finished receiving entire packet

– If packet check failed, wait until end of packet

• Outputs:

– Both valid signals should be low

– packet_match and check_match low

VERIFY_DST State

• Actions:

– Start streaming in dst field

• Compare field bit-by-bit with the local addr

– Keep summing bytes for checksum check

– Count number of bits until end of dst field

– Move back to RECEIVE_BITS after done with packet check

• Outputs:

– packet_match_valid expressed high after done streaming in dst field

– packet_match = 1 if the match passes

VERIFY_CHKSUM State

• Actions:

– Check output of byte accumulator

• This should have been running ever since we first got to RECEIVE_BITS

• Outputs:

– check_match_valid can be expressed immediately once we reach this state

– check_match = 1 if the match passes

Retiming

Retiming

• Pushing registers around to change
critical path

We can push this reg back to retime…

Retiming

• Pushing registers around to change
critical path

• Must reg all inputs to gate when
pushing reg back

We can push this reg back to retime…

Push this back to here…

Retiming

• Pushing registers around to change
critical path

• Must reg all inputs to gate when
pushing reg back

…becomes these registers

Retiming

• Pushing registers around to change
critical path

• Must reg all inputs to gate when
pushing reg back

• Combine registers that share inputs

– Outputs are the same, so can make
just one reg

This node is a shared input
with multiple registers, so
can combine registers

These outputs are the same
since their registers have
the same input node

Retiming

• Pushing registers around to change
critical path

• Must reg all inputs to gate when
pushing reg back

• Combine registers that share inputs

– Outputs are the same, so can make
just one reg

Gate Delay

• Input is 3W because PMOS ~2x
more resistive than NMOS in planar

– May vary depending on technology

• γ is process-dependent parameter

– relates input and output capacitance

Gate Delay

𝑡𝑝 = 0.69
𝑅𝑁
𝑊

𝐶𝑖𝑛𝑡 + 𝐶𝐿

= 0.69
𝑅𝑁
𝑊

3𝑊𝛾𝐶𝐺 + 𝐶𝐿

Factoring out 3𝑊𝛾𝐶𝐺,

0.69 3𝛾𝑅𝑁𝐶𝐺 1 +
𝐶𝐿
𝛾𝐶𝑖𝑛

= 𝑡𝑝0 1 +
𝐶𝐿
𝛾𝐶𝑖𝑛

= 𝑡𝑝0 1 +
𝑓

𝛾
𝑓 =

𝐶𝐿
𝐶𝑖𝑛

fanout

Wire Delay

𝑅𝑤 = 𝑟𝑤𝐿
𝐶𝑤= 𝑐𝑤𝐿

𝑡𝑝 = 0.69𝑅𝑑𝑟𝐶𝑖𝑛𝑡 + 0.69𝑅𝑑𝑟𝐶𝑤 + 0.38𝑅𝑤𝐶𝑤 + 0.69𝑅𝑑𝑟𝐶𝑓𝑎𝑛 + 0.69𝑅𝑤𝐶𝑓𝑎𝑛
= 0.69 𝑅𝑑𝑟 𝐶𝑖𝑛𝑡 + 𝐶𝑤 + 𝐶𝑓𝑎𝑛 + 𝑅𝑤𝐶𝑓𝑎𝑛 + 0.38𝑟𝑤𝑐𝑤𝐿

2

Buffer Insertion

• How can we drive this load?

𝑡𝑝 = 𝑡𝑝0 1 +
256

𝛾
≈ 257𝑡𝑝0! 𝛾 ≈ 1

• Fanout should be evenly distributed over all inverters

𝑓 = 𝑁 𝐶𝐿/𝐶𝑖𝑛

Buffer Insertion

• From lecture slides, 𝑓 ≈ 4 for minimal delay when 𝛾 = 1
4𝑁 = 256

𝑁 = log4 256
𝑁 = 4

Buffer Insertion

• From lecture slides, 𝑓 ≈ 4 for minimal delay when 𝛾 = 1
4𝑁 = 256

𝑁 = log4 256
𝑁 = 4

• Need 4 drivers, each with fanout of 4

– Each subsequent driver is 4x the previous one

MOSFET Capacitances

• Each terminal of MOSFET as some
parasitic capacitance to the
substrate

– Source/Drain capacitance from
depletion region at pn boundary

– Gate capacitance from poly-oxide-
channel

MOSFET Capacitances

• Gate capacitance

– Area x Oxide Capacitance

• 𝐶𝐺 = 𝐶𝑜𝑥 ∙ 𝑊 ∙ 𝐿

• Source/Drain (Diffusion) capacitance

– Sidewalls and bottom both contribute
to capacitance

• Bottom cap: 𝐶𝑏𝑜𝑡 = 𝐶𝑗 ∙ 𝐿𝑆 ∙ 𝑊

• Sidewall cap: 𝐶𝑠𝑤 = 𝐶𝑗𝑠𝑤 ∙ (2𝐿𝑠 +𝑊)

• For sidewall cap, do not calculate side
facing channel!

