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Dynamic CMOS Power

« Switching CMOS devices takes power

— Need current to charge/discharge gate capacitances
« Power vs. performance tradeoff

— More capacitance = more power

— Faster speed = more power

— Higher voltage = more power
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Dynamic CMOS Power
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« Switching power depends on device characteristics and operating
voltage/frequency

— Device characteristics determined by foundry and technology node
— Voltage and Frequency most easily variable for designers
— Capacitance can be optimized with layout and routing/simplification

« Can design around «a
— Design logic paths so they do not switch as often -> less power
— Some paths must have a=1 (e.g clock)
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Dynamic Power Example

« VDD =1V, f = 3.8GHz
« C,, = 30fF (x2 to take wires into account)




Short-Circuit CMOS Power

« Transient power from switching u

« Faster transitions mean less SC power —
(less time for current)
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Short-Circuit CMOS Power
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Short-Circuit CMOS Power




Leakage CMOS Power

* Transistor in cutoff mode not really off!
— Transistors are solid-state devices
— Cutoff transistors only present extremely high (but not infinite) resistance
— Basically “always-on” short circuit power!
« Modern planar devices hard to truly turn off
— Short channel effects and reduced gate control over channel
— New techniques to try to mitigate this (FinFET, SOI, GAA)
« Gate leakage
— Modern planar device oxide thickness very thin
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Pipelining

« (Can divide datapath into sequential “checkpoints”
— Divides critical path into shorter paths
— Can run at same frequency but lower supply voltage
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Parallelization

« Copy logic and run two together

« Can run at lower clock frequency and have same throughput from
hardware replication
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SRAM Cells

« 6T SRAM

— Back-to-back inverters hold value (latch)
— Access transistors to read/write from SRAM




SRAM Read

1. Bit lines both pre-charged to VDD
2. Word line pulled high to open access transistors

3. Side holding 0 will pull the bit line down and this change in voltage is measured
— Side not holding 0 is unchanged
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SRAM Write

1. Bit lines both pre-charged to value to be written
2. Word line pulled high to open access transistors
3. Bit line must overpower value held by latch to write new value
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SRAM Sizing for Read

V...m Should not cross switching voltage (e.g. VDD/2) to avoid
corrupting memory

« Access transistor should be smaller than memory cell transistors
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SRAM Sizing for Write

* V,..n Mmust be driven beyond switching voltage
— Below VDD/2 for writing 0, above VDD/2 for writing 1

« Access transistor must be larger than memory cell transistors

Berkeley

UNIVERSITY OF CALIFORNIA




