Discussion Section 9

Sean Huang April 2, 2021

DRAM

Memory Block

- Word lines used to select a row for reading or writing
- Bit lines carry data to/from periphery
- Core aspect ratio keep close to 1 to help balance delay on word line versus bit line
- Address bits are divided between the two decoders
- Row decoder used to select word line
- Column decoder used to select one or more columns for input/output of data

Large Memories

- Make larger SRAMs out of smaller SRAMs
- Each sub-SRAM has its own periphery circuits
- Need to map top-level address to each SRAM

Cache Review

- Direct-mapped
- Fully-associative
- Set-assosciative

Direct-Mapped

- Each address maps to a position in cache block
- Address contains tag, cache controller checks against this for each read access
- On miss, cache fetches correct data from main memory

Fully Associative

- Any address can occupy any space in the cache
- Allows for more temporal locality if memory locations might not be mapped close together
- Tag is entire address, so large part of cache is tag

Set-Associative

- In-between direct-mapped and fully associative
- Divide cache memory into "sets"
- Each memory location maps to a set, memory is fully associative within the set.
- Smaller tag than FA, may have better temporal locality than direct-mapped

C-Slowing

• From the example in lecture, can reorder loop and introduce new delays to pipeline the computation

C-Slowing

- From the example in lecture, can reorder loop and introduce new delays to pipeline the computation
- Half of pipelined loop is idle, so we can queue another task here

mult ay ay ay ay ay ay ay ay	add_1	x+b	x+b	x+b	x+b	x+b	x+b	
	mult	ay	ay	ay	,ay	ay	ау	
	add ₂	У	у	*y /	У	У	У	

Loop Unrolling

- By replicating the loop a few times, we can take multiple inputs in parallel and generate multiple outputs in parallel
- Beware the long critical path from the chain of operations

