
EECS 151/251A Homework 3

Due Monday, Feb 15th, 2021

Please include a short (1-2 sentence) explanation with each answer unless otherwise
directed in the question.

Problem 1: State Elements

Consider a 3-bit Linear Feedback Shift Register (LFSR). This circuit is made up of 3 positive
edge-triggered flip-flops in a delay chain. the input to DFF0 is the XOR of the outputs of DFF1 and
DFF2. The inputs are therefore described as follows.

d0 = q1 ⊕ q2
d1 = q0
d2 = q1

Draw the circuit diagram of the LFSR. Provide a timing diagram (i.e. waveform) of all the register
outputs (q0, q1, q2) and the output of the XOR (d0) for 10 cycles of the LFSR with the registers
initialized to q[2:0]=001. Use a clock period of 1 ns. The registers and XOR gates are realistic
and have delays (τclk−q = 100 ps, τsetup = 10 ps, τhold = 0 ps for the register, and τp,XOR = 50 ps).

Version: 1b - 2021-02-20 13:23:07-08:00

EECS 151/251A Homework 3 2

Solution:
Circuit Diagram:

Timing Diagram:

Problem 2: FPGA Logic Cell

You’ve started your new job at an FPGA manufacturing startup and after getting settled in you
are handed your first big assignment: the company is pursuing a different kind of logic cell and
have asked you to be the design lead for it! This cell will function as either a 5-LUT, or as two
independent 4-LUTs (that is the block can support up to 8 data inputs and 2 outputs), with
registered outputs. The foundry has given you a library of LUTs (of any size), multiplexers (up
to 8-to-1) and flip-flops, but for some reason has decided not to provide any other logic elements.
It’s been a while since the last financing cycle for your company and funds are pretty tight, so you
are asked to minimize the amount of hardware required while still achieving the same behavior.
Provide the circuit diagram for your proposal as well as a 4-5 sentence abstract of how your circuit
works and the design decisions made.

Version: 1b - 2021-02-20 13:23:07-08:00

EECS 151/251A Homework 3 3

Solution:
Here is one possible approach:

Because we were not provided any additional logic elements for this design, we must use only
the LUTs and MUXes to achieve all the operations we need. We can achieve the independent
LUT behavior by simply having two 4-LUTs, and then connecting their inputs and outputs
independently. However, to also get the 5-LUT behavior, we must MUX all the inputs of
one of the 4-LUTs to also see the same inputs as the other 4-LUT to take advantage of the
truth table splitting to implement a 5-LUT. One of the outputs must therefore also be muxed
and controlled by the 5th input bit. However, this output must ignore the 5th input when
independent LUTs are used, so this necessitates an additional 5_lut_en signal to either pass
through the 5th bit, or hold the output to only connect to the bottom LUT. This operation
could have been done using a 2-input OR gate, but since this was not in the available library,
we implement this here with a MUX and a constant value. Finally, the output of the logic
element has to be registered or not, and this will need another set of MUXes to choose between
a registered output or combinational output.

Problem 3: Bit-stream Reverse Engineering

You have been recruited as a penetration tester for a company manufacturing FPGA-based secure
endpoints for a private network. They have asked you to pose as a potential attacker and try to
find vulnerabilities in their system. After thinking about the most likely avenues of attack, you
decide to pose as a malicious actor who has acquired detailed information on the FPGA that is
being used in the endpoints. After analyzing a sample of the device, you were able to determine a
few properties of the system.

Version: 1b - 2021-02-20 13:23:07-08:00

EECS 151/251A Homework 3 4

1. The device contains a collection of N-LUTs (the value of N is part of the mystery). The LUTs
are numbered 0, 1, 2, Each LUT in the FPGA has the same number of inputs (same N).

2. Each LUT has an output labeled yi, where i is the LUT number, and inputs labeled xi_j ,
where i is the LUT number and j is the input number.

3. For programming, the LUTs are connected in a shift register. They are programmed with a
configuration bit-stream shifted in from one LUT to the next. Recall from lecture that the
configuration bit-stream programs the values of the latches for the truth table.

4. The encryption is a stream cipher. This particular implementation uses several LFSRs, one
of which is relying on some LUTs to perform an XOR operation. If the XOR LUTs
are exposed, it would seriously compromise the security of the device, so the company is very
interested in knowing which LUTs are exposed.

5. One of the LUTs is programmed as a simple 2-bit AND gate (Hint: this will be useful in
figuring out the endianness and size of the LUTs.).

6. Via a side-channel power analysis attack, you were able to determine part of the bitstream,
shown here: 0x1111111169969669575757FF699696697F77FFFF. This bitstream is fed in from
right to left (i.e. F is fed first and 1 is fed last).

(a) How many LUTs would the above bit stream program?

Solution:
We know there was only 1 LUT used as a simple 2-bit AND. The bitstream for an inverter
can be a string of 1’s or 8’s, depending on the order of how the bits are shifted in. We can
see that there is a string of 1’s. If the device used 4-LUTs, the bitstream would contain
only a 1111 since there is only 1 AND gate, but since the bitstream contains a 11111111,
then we know the device uses 5-LUTs instead. Knowing this we can determine that
the bitstream programs 5 5-LUTs since there are 160 bits in the bitstream, each 5-LUT
requiring 32 bits.

(b) For each of the LUTs, determine the boolean function performed. Show your work.

Solution:
From right to left:

• x0,0x0,1

• x1,4 ⊕ x1,3 ⊕ x1,2 ⊕ x1,1 ⊕ x1,0

• x2,4x2,3 + x2,2x2,1 + x2,0

• x3,4 ⊕ x3,3 ⊕ x3,2 ⊕ x3,1 ⊕ x3,0

• x4,4 + x′4,3x4,2 + x4,1 + x4,0

(c) You performed the side-channel attack only after realizing the FPGA was beginning to be
reprogrammed and so only got the tail end of the programming bitstream (that is the last
LUT you see being programmed is LUT0). Which LUTs should you report are the XOR LUTs
that are vulnerable to detection?

Version: 1b - 2021-02-20 13:23:07-08:00

EECS 151/251A Homework 3 5

Solution:
LUT1 and LUT3 are the XOR LUTs.

Version: 1b - 2021-02-20 13:23:07-08:00

EECS 151/251A Homework 3 6

Problem 4: LUT Mapping

(a) Using only 4-LUTs, partition the circuit above into as few LUTs as possible. Do not simplify
the gate-level circuit before mapping to LUTs.

Solution:

Version: 1b - 2021-02-20 13:23:07-08:00

EECS 151/251A Homework 3 7

The grounded input is a "don’t care" value, which the mapping tool will assign to either
VDD (logic 1) or GND (logic 0). In this case, I have chosen to connect it to GND.

(b) Using only 3-LUTs, partition the circuit above into as few LUTs as possible. Do not simplify
the gate-level circuit before mapping to LUTs.

Solution:

The grounded inputs are "don’t care" values, which the mapping tool will assign to either
VDD (logic 1) or GND (logic 0). In this case, I have chosen to connect them to GND.

Problem 5: State-of-the-Art FPGAs

Time to do a little research! Find the latest and largest FPGA from Altera (now Intel). How many
logic cells are on it? How many LUTs are on each logic cell? How many inputs per LUT?

Solution:
The current largest state-of-the-art Intel FPGA is the Agilex™F-Series (product table available
here). The largest FPGA on offer is the AGF 027 with a whopping 2,692,760 Logic Elements,
although Intel prefers to refer to their FPGA blocks as Adaptive Logic Modules (ALM), which
will repartition the chip into 912,800 of these. Each ALM consists of an 8-input reconfigurable
LUT (which is itself made of 4 4-LUTs) with several dedicated adder blocks, along with 4 regis-
tered outputs and one fast 5-LUT output that bypasses the registers to create a combinational
output. A guide to the ALM and its design is available here.

Version: 1b - 2021-02-20 13:23:07-08:00

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/intel-agilex-f-series-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ug-ag-lab.pdf

EECS 151/251A Homework 3 8

Problem 6: K-Maps

Consider the following SOP expression:

y = a′b′c′d′e′ + a′b′c′d′e+ a′b′c′de′ + a′b′c′de+ a′b′cd′e+ a′b′cde

+ a′b′cde′ + a′bcd′e′ + a′bcd′e+ a′bcde+ a′bcde′

+ abc′d′e′ + abc′de′ + ab′cd′e′ + ab′cd′e+ ab′cde

+ ab′cde′ + abcd′e′ + abcd′e+ abcde+ abc′d′e

+ abc′de

Provide the truth table for this expression. Simplify this expression with the help of a 5-variable
K-map into the minimal SOP form.

Solution:
The truth table for this expression is as follows:

Version: 1b - 2021-02-20 13:23:07-08:00

EECS 151/251A Homework 3 9

A B C D E Y
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 1
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 0 1 1
1 0 1 1 0 1
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 1 1
1 1 0 1 0 0
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 0
1 1 1 1 1 1

Applying a Karnaugh Map and grouping as many terms as possible to have the simplest SOP
form,

Version: 1b - 2021-02-20 13:23:07-08:00

EECS 151/251A Homework 3 10

de

bc

de

a= 0 a= 1

00 01 11 10 00 01 11 10

00

01

11

10

1 1 11

1 11

1 1

1 1 11

1 1 11

1 1

1 1 1

0

0 0

0 0 00

0 0

0

This allows us to simplify the SOP expression to

y = ce+ acd′ + a′be′ + b′cd+ a′b′c′ + abe

Problem 7: Another K-Map

As the head of circuit design at a small IoT device startup, you have been tasked with designing the
interface between one of the environmental sensors and the microprocessor. The analog designer
has created a front-end interface that reads in the voltage from a barometer to a simple resistor
ladder ADC, which converts the sensor input into a custom thermometer code. You are now tasked
with decoding this thermometer code to binary so the processor can read the value. The truth
table is below.

T3 T2 T1 T0 b1 b0
0 0 0 1 0 0
0 0 1 1 0 1
0 1 1 1 1 0
1 1 1 1 1 1

Note that in this case binary code 00 corresponds to a thermometer code of 1

What is the minimal SOP form for each binary bit as a function of the thermometer bits? Use a
K-map to help your reduce the terms.

Solution:
The non-minimized SOP form of all minterms for each output is as follows.

b1 = T0T1T2T
′
3 + T0T1T2T3

b1 = T0T
′
1T
′
2T
′
3 + T0T1T

′
2T
′
3 + T0T1T2T

′
3 + T0T1T2T3

Note that since T0 = 1 for all outputs, none of the outputs depend on this input. We will
demonstrate a 4-variable K-map including T0 for the solution, but a 3-variable K-map without

Version: 1b - 2021-02-20 13:23:07-08:00

EECS 151/251A Homework 3 11

T0 is also acceptable with an explanation for its omission. Since the input is thermometer
coded, we can safely assume that no other inputs are possible besides the given 4, and therefore
these spaces can be represented with a "don’t care" value.

T1T0

T3T2

00 01 11 10

00

01

11

10

1

1

0 0- -

- - -

- - --

- - -

Karnaugh Map for b1

T1T0

T3T2

00 01 11 10

00

01

11

10

1

1

0

0

- -

- - -

- - --

- - -

Karnaugh Map for b0

The minimized SOP expressions are therefore

b1 = T2

b0 = T3 + T1T
′
2

Problem 8: Boolean Algebra

Consider a full subtractor, the negative counterpart of the full adder. This block has two outputs,
d and bout, for the difference and borrow outputs, respectively.

(a) Provide the truth table for this block, with the inputs x, y, and bin.

Solution:
The truth table is as follows:

x y bin d bout

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Version: 1b - 2021-02-20 13:23:07-08:00

EECS 151/251A Homework 3 12

(b) Perform a simplification by boolean algebra of the bout output. Refer to slide 25 of Lecture 6
for an example of boolean simplification.

Solution:
The SOP expression for bout is

bout = x′y′bin + x′yb′in + x′ybin + xybin

Following the steps in the lecture slids, we will create a duplicate x′ybin term with the
idempotence property, then group by distributive property,

bout = x′y′bin + x′yb′in + x′ybin + xybin

= x′y′bin + x′yb′in + x′ybin + x′ybin + xybin

= x′y′bin + x′ybin + x′yb′in + x′ybin + xybin

= (y + y′)x′bin + x′yb′in + x′ybin + xybin

= (1)x′bin + x′yb′in + x′ybin + xybin

Repeat with the same term to simplify the last product in the sum,

bout = x′bin + x′yb′in + x′ybin + xybin

= x′bin + x′yb′in + x′ybin + x′ybin + xybin

= x′bin + x′yb′in + x′ybin + (x′ + x)ybin

= x′bin + x′yb′in + x′ybin + (1)ybin

Finally, group the middle two terms,

bout = x′bin + x′yb′in + x′ybin + ybin

= x′bin + x′y(b′in + bin) + ybin

= x′bin + x′y(1) + ybin

The final simplified SOP expression for bout is therefore

bout = x′bin + x′y + ybin

Version: 1b - 2021-02-20 13:23:07-08:00

EECS 151/251A Homework 3 13

Problem 9: De Morgan’s Law

(a) Convert the following circuit into an equivalent circuit using only a minimal number of
2-input NOR gates.

Solution:

(b) The d output for the full subtractor in Problem 7 can be expressed in SOP form as

d = x′y′bin + xy′b′in + x′yb′in + xybin

Convert this to POS form.

Solution:

d =
(
(x+ y + b′in)(x′y′bin)(xy′bin)(x′y′b′in)

)′

Version: 1b - 2021-02-20 13:23:07-08:00

