EECS 151/251A Homework 3

Due Monday, Feb $15^{\text {th }}, 2021$

Please include a short (1-2 sentence) explanation with each answer unless otherwise directed in the question.

Problem 1: State Elements

Consider a 3-bit Linear Feedback Shift Register (LFSR). This circuit is made up of 3 positive edge-triggered flip-flops in a delay chain. the input to DFFO is the XOR of the outputs of DFF1 and DFF2. The inputs are therefore described as follows.

$$
\begin{gathered}
d_{0}=q_{1} \oplus q_{2} \\
d_{1}=q_{0} \\
d_{2}=q_{1}
\end{gathered}
$$

Draw the circuit diagram of the LFSR. Provide a timing diagram (i.e. waveform) of all the register outputs $\left(q_{0}, q_{1}, q_{2}\right)$ and the output of the XOR $\left(d_{0}\right)$ for 10 cycles of the LFSR with the registers initialized to $\mathrm{q}[2: 0]=001$. Use a clock period of 1 ns . The registers and XOR gates are realistic and have delays ($\tau_{\mathrm{clk}-\mathrm{q}}=100 \mathrm{ps}, \tau_{\text {setup }}=10 \mathrm{ps}, \tau_{\text {hold }}=0 \mathrm{ps}$ for the register, and $\left.\tau_{p, \mathrm{XOR}}=50 \mathrm{ps}\right)$.

Solution:

Circuit Diagram:

Timing Diagram:

Problem 2: FPGA Logic Cell

You've started your new job at an FPGA manufacturing startup and after getting settled in you are handed your first big assignment: the company is pursuing a different kind of logic cell and have asked you to be the design lead for it! This cell will function as either a 5-LUT, or as two independent 4-LUTs (that is the block can support up to 8 data inputs and 2 outputs), with registered outputs. The foundry has given you a library of LUTs (of any size), multiplexers (up to 8 -to-1) and flip-flops, but for some reason has decided not to provide any other logic elements. It's been a while since the last financing cycle for your company and funds are pretty tight, so you are asked to minimize the amount of hardware required while still achieving the same behavior. Provide the circuit diagram for your proposal as well as a $4-5$ sentence abstract of how your circuit works and the design decisions made.

Solution:

Here is one possible approach:

Because we were not provided any additional logic elements for this design, we must use only the LUTs and MUXes to achieve all the operations we need. We can achieve the independent LUT behavior by simply having two 4 -LUTs, and then connecting their inputs and outputs independently. However, to also get the 5-LUT behavior, we must MUX all the inputs of one of the 4 -LUTs to also see the same inputs as the other 4 -LUT to take advantage of the truth table splitting to implement a 5-LUT. One of the outputs must therefore also be muxed and controlled by the 5 th input bit. However, this output must ignore the 5 th input when independent LUTs are used, so this necessitates an additional 5_lut_en signal to either pass through the 5th bit, or hold the output to only connect to the bottom LUT. This operation could have been done using a 2 -input OR gate, but since this was not in the available library, we implement this here with a MUX and a constant value. Finally, the output of the logic element has to be registered or not, and this will need another set of MUXes to choose between a registered output or combinational output.

Problem 3: Bit-stream Reverse Engineering

You have been recruited as a penetration tester for a company manufacturing FPGA-based secure endpoints for a private network. They have asked you to pose as a potential attacker and try to find vulnerabilities in their system. After thinking about the most likely avenues of attack, you decide to pose as a malicious actor who has acquired detailed information on the FPGA that is being used in the endpoints. After analyzing a sample of the device, you were able to determine a few properties of the system.

1. The device contains a collection of N-LUTs (the value of N is part of the mystery). The LUTs are numbered $0,1,2, \ldots$. Each LUT in the FPGA has the same number of inputs (same N).
2. Each LUT has an output labeled y_{i}, where i is the LUT number, and inputs labeled $x_{i _j}$, where i is the LUT number and j is the input number.
3. For programming, the LUTs are connected in a shift register. They are programmed with a configuration bit-stream shifted in from one LUT to the next. Recall from lecture that the configuration bit-stream programs the values of the latches for the truth table.
4. The encryption is a stream cipher. This particular implementation uses several LFSRs, one of which is relying on some LUTs to perform an XOR operation. If the XOR LUTs are exposed, it would seriously compromise the security of the device, so the company is very interested in knowing which LUTs are exposed.
5. One of the LUTs is programmed as a simple 2-bit AND gate (Hint: this will be useful in figuring out the endianness and size of the LUTs.).
6. Via a side-channel power analysis attack, you were able to determine part of the bitstream, shown here: 0x1111111169969669575757FF699696697F77FFFF. This bitstream is fed in from right to left (i.e. F is fed first and 1 is fed last).
(a) How many LUTs would the above bit stream program?

Solution:

We know there was only 1 LUT used as a simple 2-bit AND. The bitstream for an inverter can be a string of 1's or 8's, depending on the order of how the bits are shifted in. We can see that there is a string of 1 's. If the device used 4 -LUTs, the bitstream would contain only a 1111 since there is only 1 AND gate, but since the bitstream contains a 11111111, then we know the device uses 5 -LUTs instead. Knowing this we can determine that the bitstream programs 55 -LUTs since there are 160 bits in the bitstream, each 5-LUT requiring 32 bits.
(b) For each of the LUTs, determine the boolean function performed. Show your work.

Solution:

From right to left:

- $x_{0,0} x_{0,1}$
- $x_{1,4} \oplus x_{1,3} \oplus x_{1,2} \oplus x_{1,1} \oplus x_{1,0}$
- $x_{2,4} x_{2,3}+x_{2,2} x_{2,1}+x_{2,0}$
- $x_{3,4} \oplus x_{3,3} \oplus x_{3,2} \oplus x_{3,1} \oplus x_{3,0}$
- $x_{4,4}+x_{4,3}^{\prime} x_{4,2}+x_{4,1}+x_{4,0}$
(c) You performed the side-channel attack only after realizing the FPGA was beginning to be reprogrammed and so only got the tail end of the programming bitstream (that is the last LUT you see being programmed is LUT0). Which LUTs should you report are the XOR LUTs that are vulnerable to detection?

Solution:

LUT1 and LUT3 are the XOR LUTs.

Problem 4: LUT Mapping

(a) Using only 4-LUTs, partition the circuit above into as few LUTs as possible. Do not simplify the gate-level circuit before mapping to LUTs.

Solution:

The grounded input is a "don't care" value, which the mapping tool will assign to either VDD (logic 1) or GND (logic 0). In this case, I have chosen to connect it to GND.
(b) Using only 3-LUTs, partition the circuit above into as few LUTs as possible. Do not simplify the gate-level circuit before mapping to LUTs.

Solution:

The grounded inputs are "don't care" values, which the mapping tool will assign to either VDD (logic 1) or GND (logic 0). In this case, I have chosen to connect them to GND.

Problem 5: State-of-the-Art FPGAs

Time to do a little research! Find the latest and largest FPGA from Altera (now Intel). How many logic cells are on it? How many LUTs are on each logic cell? How many inputs per LUT?

Solution:

The current largest state-of-the-art Intel FPGA is the Agilex ${ }^{\text {TM }}$ F-Series (product table available here). The largest FPGA on offer is the AGF 027 with a whopping 2,692,760 Logic Elements, although Intel prefers to refer to their FPGA blocks as Adaptive Logic Modules (ALM), which will repartition the chip into 912,800 of these. Each ALM consists of an 8-input reconfigurable LUT (which is itself made of 44 -LUTs) with several dedicated adder blocks, along with 4 registered outputs and one fast 5-LUT output that bypasses the registers to create a combinational output. A guide to the ALM and its design is available here.

Problem 6: K-Maps

Consider the following SOP expression:

$$
\begin{aligned}
y=a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime} & +a^{\prime} b^{\prime} c^{\prime} d^{\prime} e+a^{\prime} b^{\prime} c^{\prime} d e^{\prime}+a^{\prime} b^{\prime} c^{\prime} d e+a^{\prime} b^{\prime} c d^{\prime} e+a^{\prime} b^{\prime} c d e \\
& +a^{\prime} b^{\prime} c d e^{\prime}+a^{\prime} b c d^{\prime} e^{\prime}+a^{\prime} b c d^{\prime} e+a^{\prime} b c d e+a^{\prime} b c d e^{\prime} \\
& +a b c^{\prime} d^{\prime} e^{\prime}+a b c^{\prime} d e^{\prime}+a b^{\prime} c d^{\prime} e^{\prime}+a b^{\prime} c d^{\prime} e+a b^{\prime} c d e \\
& +a b^{\prime} c d e^{\prime}+a b c d^{\prime} e^{\prime}+a b c d^{\prime} e+a b c d e+a b c^{\prime} d^{\prime} e \\
& +a b c^{\prime} d e
\end{aligned}
$$

Provide the truth table for this expression. Simplify this expression with the help of a 5 -variable K-map into the minimal SOP form.

Solution:

The truth table for this expression is as follows:

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{Y}
0	0	0	0	0	1
0	0	0	0	1	1
0	0	0	1	0	1
0	0	0	1	1	1
0	0	1	0	0	0
0	0	1	0	1	1
0	0	1	1	0	1
0	0	1	1	1	1
0	1	0	0	0	1
0	1	0	0	1	0
0	1	0	1	0	1
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	0	1	1
0	1	1	1	0	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	0	1	0
1	0	0	1	0	0
1	0	0	1	1	0
1	0	1	0	0	1
1	0	1	0	1	1
1	0	1	1	0	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	0	1	1
1	1	0	1	0	0
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	0	1	1
1	1	1	1	0	0
1	1	1	1	1	1
0					

Applying a Karnaugh Map and grouping as many terms as possible to have the simplest SOP form,

This allows us to simplify the SOP expression to

$$
y=c e+a c d^{\prime}+a^{\prime} b e^{\prime}+b^{\prime} c d+a^{\prime} b^{\prime} c^{\prime}+a b e
$$

Problem 7: Another K-Map

As the head of circuit design at a small IoT device startup, you have been tasked with designing the interface between one of the environmental sensors and the microprocessor. The analog designer has created a front-end interface that reads in the voltage from a barometer to a simple resistor ladder ADC, which converts the sensor input into a custom thermometer code. You are now tasked with decoding this thermometer code to binary so the processor can read the value. The truth table is below.

T_{3}	T_{2}	T_{1}	T_{0}	b_{1}	b_{0}
0	0	0	1	0	0
0	0	1	1	0	1
0	1	1	1	1	0
1	1	1	1	1	1

Note that in this case binary code 00 corresponds to a thermometer code of 1
What is the minimal SOP form for each binary bit as a function of the thermometer bits? Use a K-map to help your reduce the terms.

Solution:

The non-minimized SOP form of all minterms for each output is as follows.

$$
\begin{gathered}
b_{1}=T_{0} T_{1} T_{2} T_{3}^{\prime}+T_{0} T_{1} T_{2} T_{3} \\
b_{1}=T_{0} T_{1}^{\prime} T_{2}^{\prime} T_{3}^{\prime}+T_{0} T_{1} T_{2}^{\prime} T_{3}^{\prime}+T_{0} T_{1} T_{2} T_{3}^{\prime}+T_{0} T_{1} T_{2} T_{3}
\end{gathered}
$$

Note that since $T_{0}=1$ for all outputs, none of the outputs depend on this input. We will demonstrate a 4 -variable K-map including T_{0} for the solution, but a 3 -variable K-map without
T_{0} is also acceptable with an explanation for its omission. Since the input is thermometer coded, we can safely assume that no other inputs are possible besides the given 4 , and therefore these spaces can be represented with a "don't care" value.

The minimized SOP expressions are therefore

$$
\begin{gathered}
b_{1}=T_{2} \\
b_{0}=T_{3}+T_{1} T_{2}^{\prime}
\end{gathered}
$$

Problem 8: Boolean Algebra

Consider a full subtractor, the negative counterpart of the full adder. This block has two outputs, d and $b_{\text {out }}$, for the difference and borrow outputs, respectively.
(a) Provide the truth table for this block, with the inputs x, y, and $b_{i n}$.

Solution:

The truth table is as follows:

x	y	$b_{\text {in }}$	d	$b_{\text {out }}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

(b) Perform a simplification by boolean algebra of the $b_{\text {out }}$ output. Refer to slide 25 of Lecture 6 for an example of boolean simplification.

Solution:

The SOP expression for $b_{\text {out }}$ is

$$
b_{\text {out }}=x^{\prime} y^{\prime} b_{\text {in }}+x^{\prime} y b_{\text {in }}^{\prime}+x^{\prime} y b_{\text {in }}+x y b_{\text {in }}
$$

Following the steps in the lecture slids, we will create a duplicate $x^{\prime} y b_{i n}$ term with the idempotence property, then group by distributive property,

$$
\begin{aligned}
b_{\text {out }} & =x^{\prime} y^{\prime} b_{\text {in }}+x^{\prime} y b_{i n}^{\prime}+x^{\prime} y b_{i n}+x y b_{i n} \\
& =x^{\prime} y^{\prime} b_{i n}+x^{\prime} y b_{i n}^{\prime}+x^{\prime} y b_{i n}+x^{\prime} y b_{i n}+x y b_{i n} \\
& =x^{\prime} y^{\prime} b_{i n}+x^{\prime} y b_{i n}+x^{\prime} y b_{i n}^{\prime}+x^{\prime} y b_{i n}+x y b_{i n} \\
& =\left(y+y^{\prime}\right) x^{\prime} b_{i n}+x^{\prime} y b_{i n}^{\prime}+x^{\prime} y b_{i n}+x y b_{i n} \\
& =(1) x^{\prime} b_{i n}+x^{\prime} y b_{i n}^{\prime}+x^{\prime} y b_{i n}+x y b_{i n}
\end{aligned}
$$

Repeat with the same term to simplify the last product in the sum,

$$
\begin{aligned}
b_{\text {out }} & =x^{\prime} b_{\text {in }}+x^{\prime} y b_{i n}^{\prime}+x^{\prime} y b_{\text {in }}+x y b_{\text {in }} \\
& =x^{\prime} b_{\text {in }}+x^{\prime} y b_{i n}^{\prime}+x^{\prime} y b_{i n}+x^{\prime} y b_{\text {in }}+x y b_{i n} \\
& =x^{\prime} b_{i n}+x^{\prime} y b_{\text {in }}^{\prime}+x^{\prime} y b_{i n}+\left(x^{\prime}+x\right) y b_{\text {in }} \\
& =x^{\prime} b_{i n}+x^{\prime} y b_{i n}^{\prime}+x^{\prime} y b_{i n}+(1) y b_{i n}
\end{aligned}
$$

Finally, group the middle two terms,

$$
\begin{aligned}
b_{\text {out }} & =x^{\prime} b_{i n}+x^{\prime} y b_{i n}^{\prime}+x^{\prime} y b_{i n}+y b_{\text {in }} \\
& =x^{\prime} b_{i n}+x^{\prime} y\left(b_{i n}^{\prime}+b_{\text {in }}\right)+y b_{i n} \\
& =x^{\prime} b_{i n}+x^{\prime} y(1)+y b_{i n}
\end{aligned}
$$

The final simplified SOP expression for $b_{\text {out }}$ is therefore

$$
b_{\text {out }}=x^{\prime} b_{\text {in }}+x^{\prime} y+y b_{\text {in }}
$$

Problem 9: De Morgan's Law

(a) Convert the following circuit into an equivalent circuit using only a minimal number of 2 -input NOR gates.

Solution:

(b) The d output for the full subtractor in Problem 7 can be expressed in SOP form as

$$
d=x^{\prime} y^{\prime} b_{i n}+x y^{\prime} b_{i n}^{\prime}+x^{\prime} y b_{i n}^{\prime}+x y b_{i n}
$$

Convert this to POS form.

Solution:

$$
d=\left(\left(x+y+b_{i n}^{\prime}\right)\left(x^{\prime} y^{\prime} b_{i n}\right)\left(x y^{\prime} b_{i n}\right)\left(x^{\prime} y^{\prime} b_{i n}^{\prime}\right)\right)^{\prime}
$$

