
EECS 151/251A Homework 4

Due Monday, Feb 22th, 2021

For this HW Assignment

You will be asked to write several Verilog modules as part of this HW assignment. You are
encouraged to test them to verify functionality by running them through a testbench. As in
Homework 2, a highly suggested simulator is https://www.edaplayground.com which is a free,
online, Verilog simulator.

Warning: As per our EECS151 "no register inference policy", you will need to use the
register library in EECS151.v when using registers in your Verilog. EECS151.v is located
at https://inst.eecs.berkeley.edu/~eecs151/sp21/files/lib/EECS151.v. We will only
accept solutions using this library.

You can import this library by adding ‘include "EECS151.v" to your Verilog code.

As with previous homework assignments, please include a short (1-2 sentence) explanation
of your work and the design/analysis process unless otherwise directed in the problem.

Problem 1. Light Display

As a side project, you have been consulted for the design of a simple light display for use as a
decorative element in your friend’s livestreaming setup. Your friend asks for the following features
for their light fixture:

• The display is a bar of LEDs, which have a common cathode (negative connection), but
independent anodes (postitive connections).

• The bar of LEDs starts up with one LED on at the left edge.

• When running, the lights will switch on and off such that it gives the appearance of the light
traveling back and forth along the bar. That is it will look like one light is traveling to the
right, bouncing off the right end of the bar, then travelling left until it bounces off the left
end, and so on.

• There will be an input reset to reset the bar to the initial state of having one light on at the
left end.

• There will be another input switch that, when on, causes the number of lights to change
between just 1 light on and 2 lights on every time the light reaches the left end of the bar.

• If switch is off, the display will keep whichever number of lights it currently has on and
maintain the bouncing behavior.
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• If reset is on, revert to the initial state of one light at the left. This takes precedence over
all other transitions.

Your friend also provides the following illustration that demonstrates the points above.

When switch is off
When switch is on

The lights will be controlled by a configurable shift register, which can change both the shifting
direction as well as load in a set value, which will be used when switching between 1 and 2 lights.
The shift register has a 2-bit configuration input and will shift right if the input is 01, left if it is
10, stop if the input is 00, and load a new value if the input is 11. The shift register also generates
a left_edge and right_edge flag when the leftmost and rightmost bit are 1, respectively. (You
do not need to generate the loaded values, just the configuration bits of the shift register.)

For this problem:

(a) Draw and label the State Transition Diagram for a Moore Machine that performs the above
behavior by setting the configuration bits for the shift register.

(b) Write a behavioral Verilog module of the state machine. Remember to use the EECS151.v
library!

Problem 2. FSM Design

Consider a simple dishwasher that has an option for a quick rinse cycle or a full wash cycle. The
dishwasher will first rinse the dishes with hot water, then decide whether to wash with detergent or
skip straight to drying depending on the setting. If you open the door of the dishwasher prematurely,
a door switch will trigger a reset and the dishwasher will stop and go back to the initial state. A
timer raises a time flag when the dishwasher is ready to move to the next state. The dishwasher
has three outputs: water, detergent, heat. During the rinse cycle, it will request water. During
the wash cycle, it will request water and detergent. During the dry cycle it will request only heat.
Here is a conceptual state transition diagram for the dishwasher:
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For each of the following scenarios, please provide:

• A state transition diagram with the state names and encoding (e.g. STOP (00)), as well as
outputs labeled appropriately.

• A circuit diagram of the state machine. The state machine will receive the inputs reset,
start, quick, and time. The state machine must have the outputs water, detergent, and
heat. You may use logic gates of 4 inputs or fewer as well as multiplexers to implement your
next state logic.

• A quick (1-2 sentence) summary of your design process and decisions.

Design the FSM for each of these scenarios:

(a) Binary-encoded Moore Machine

(b) Binary-encoded Mealy Machine

(c) One-hot Moore Machine

(d) One-hot Mealy Machine
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Problem 3: Bit-Serial Network Interface

Design an FSM that will act as a receiver for a bit-serial network interface. The interface receives
each packet serially, and the packets follow a special format:

<src address (4 Bytes)><dst address (4B)><payload (512B)><checksum(1B)>

Where src is the address of the sending node, dst is the address of the intended recipient, payload
is the data content being send, and checksum is the check value to detect bit corruption in the
received packet. This packet arrives src field first, with bits following afterwards (i.e. the packet
is "read" left to right).

The sender node will compute the checksum of each packet by taking the sum of all the previous
bits of the packet (i.e. the src, dst, and payload fields) modulo 256, so the result is 1 byte long.
It then takes the 1’s complement of this sum and appends it to the packet as the checksum value.
The receiving node then checks the contents of the package by summing the src, dst, and payload
fields with the checksum field. Therefore, if the bits are all correct, the final value of this sum
should total to 0. If this is not 0, then the check fails and the receiver knows that the packet it has
received has somehow been corrupted.

In this design, the address of the receiving node is stored in a 4B wide register, which we will name
my_addr. Your FSM should check for both the destination address as well as the packet fidelity,
each with their respective outputs. The checks and input/output specification of the receiver is as
follows:

• Check that we are the intended recipient (i.e. the dst matches my_addr), and if the match
succeeds, set output packet_match true.

• Check that the packet is uncorrupted, and if the test succeeds, set output check_match true.

• The two match signals each have a packet_match_valid and check_match_valid signal
associated with them. This valid signal should be set to True synchronously with
the completion of their respective checks.

• The receiver should pause the input from the serial interface until it is done processing the
current packet. To achieve this, the interface will not feed new bits to the receiver until
the receiver sets a input_ready signal high. Similarly, the interface presents a signal to the
input_valid input of the receiver. The receiver should only accept new bits when
these signals are both high.

You are given access to several auxilliary blocks to use as part of this state machine. There is a
parametrizable clock-enabled shift register and counter that you may use to assist the state machine
by generating flags to be used as additional inputs to the FSM. You may use Verilog comparison
operators as well as the addition operator to implement the checks.

You are free to choose between a binary-encoded SM or one-hot SM, and between Moore or Mealy
machines. Please discuss this choice in the summary. For this problem, turn in:
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• A state transition diagram with outputs labeled.

• A block diagram of your FSM. You may abstract the counters, adders, comparators, and
shift register as black box modules, but the state registers and next state logic for the state
machine must be elaborated in full.

• A behavioral Verilog implementation of the state machine.

• A short (3-4 sentence) description of your design procedure and decisions.
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