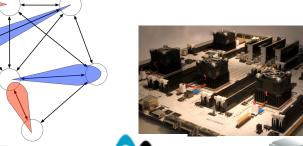
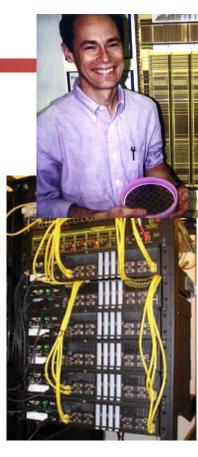


EECS 151/251A
Spring 2021
Digital Design and Integrated
Circuits

Instructor:
John Wawrzynek


Lecture 1

John Wawrzynek Professor of EECS

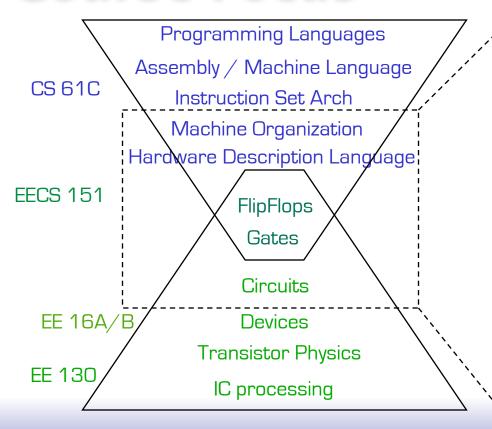

EECS151/251A Spring 202

- Profession Musician in New York
- JPL/NASA space craft data systems
- PhD Caltech electronic music
- Berkeley faculty since 1989
 - IC design, signal processing systems
 - High performance computer design
 - Wireless system design

Class Goals and Outcomes

What this class is all about?

- Introduction to digital integrated circuit and system engineering
 - Key concepts needed to be a good digital designer
 - Discover you own creativity!
- Learn models that allow reasoning about design
 - Manage design complexity through abstraction and understanding of tools
 - Allow analysis and optimization of the circuit's performance, power, cost, etc.
- Learn how to make sure your circuit and system works
 - Do you want your block to be the one that screws up a 1 billion transistor chip?


Digital design is not a spectator sport!

Learn by doing.

Prerequisites

- □ CS61C
 - Boolean logic, RISC-V ISA
 - We will review combinational and sequential logic, and RISC-V design (with more details)
- □ EE16A/B
 - Digital gates, RC networks
 - We will review transistor operation and design of CMOS circuits

Course Focus

Deep Digital Design Experience

Fundamentals of Boolean Logic

Synchronous Circuits

Finite State Machines

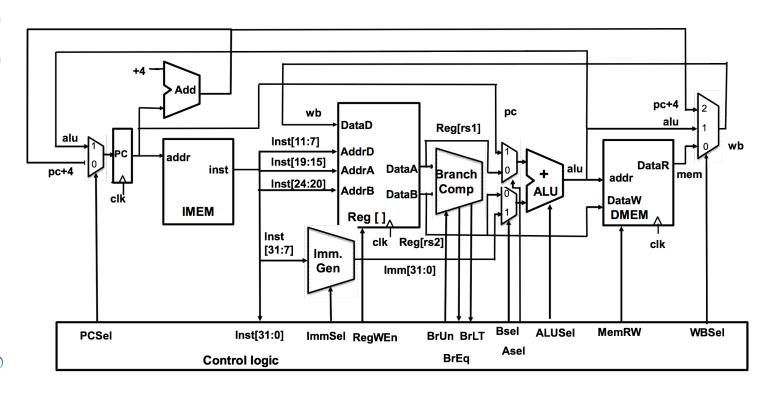
Timing & Clocking

Device Technology & Implications

Controller Design

Arithmetic Units

Memories


Testing, Debugging

Hardware Architecture

Hardware Design Language (HDL)

Design Flow (CAD)

CS61C Background - RISC-V ISA and microarchitecture

• Used in lectures as a design example, and you'll implement in project. We review the microarchitecture, and discuss the design in detail.

ADMINISTRATIVIA

EECS151/251A Instructors

Professor John Wawrzynek (Warznek)
johnw@berkeley.edu
Office Hours:
Th 2:30PM & by appointment.
Lecture Zoom Link

Reader: Charles Hong

Sean Huang ASIC Labs, Discussion Sections Office Hours: TBA

Tan NguyenFPGA Labs
Office Hours: TBA

Enrollement: Waitlist

- □ If your are currently enrolled in a lab section and are on the waitlist for the lecture will automatically to added to the class.
- □ If you are on the waitlist and are willing to take the ASIC lab will be added to the class right away (go ahead a register for the lab, then let us know).
- □ We have very few spots left in the FPGA lab and we have logistical challenges getting the lab kit to you in time. Therefore, if you are on the waitlist and would like to take the FPGA lab, you will need to be local and able to pick up the lab kit in person, and wait a few days until we see if we can add you.
- □ In all cases, if you are on the waitlist and not currently enrolled in a lab section, please contact us and let up know your intentions/ preferences.

Course Information

□ Basic Source of Information, class website:

http://inst.eecs.berkeley.edu/~eecs151/sp21/

- Lecture notes and zoom recordings
- Assignments and solutions
- Lab and project information
- Exams
- Piazza Discussion Forum
- Many other goodies ...

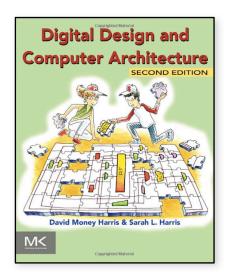
Print only what you need: Save a tree!

Class Organization

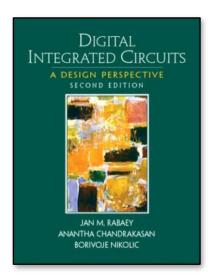
- □ Lectures (*TuTh 3:30-5* | same zoom link all semester)
- □ Discussion sessions (F 9:00-10A)
- □ Office hours (check website)
- Weekly Problem Sets
- □ Labs (with weekly zoom sessions)
 - □ FPGA (11-2 Tu or 8-11 We)
 - □ ASIC (5-8 Mon)
 - □ or both
- Design project
- □ 2 Exams

Lectures

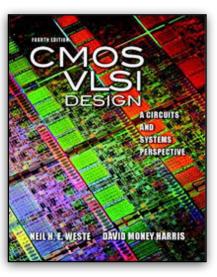
- □ Slides available on website before the lecture
- Lectures to be recorded, and available on class website:


Lecture zoom link: https://berkeley.zoom.us/j/95804614978

Recording playlist:


https://youtube.com/playlist?list=PLnocShPlK-Fvs_OOWeWJu4dfvKHRtho0Y

Class Textbooks


No Required Book this semester

Recommended (previously required)

Recommended

Useful

□Useful LA lab reference (EE151/251A):

■ Erik Brunvand: Digital VLSI Chip Design with Cadence and Synopsys CAD Tools

Discussion Sessions

- □ Start this week (Friday)!
- □ Review of important concepts from lecture (remember no text book)
- □ Help with problem sets
- □ Friday 9-10AM, check piazza for zoom link.
- □ Will be recorded and posted.

Problem Sets

- □ Approximately 12 over the course of the semester (one per week)
- Posted on Friday, due on Monday 11:59pm,10 days later
- Essential to understanding of the material
 - Hence take them seriously!
 - Ok to discuss with colleagues but need to turn in your own work / write-up / explanations
- □ Late turn-in: 20% point deduction per day, except with documented medical excuse
- Solutions posted Friday of due week

Labs

- □ Enroll in FPGA or ASIC or both (or another in a later semester)
- □ 6 FPGA / 6 ASIC lab exercises, done solo
 - Lab report (check off) due by next lab session
- □ Design Project lasts ~7 weeks, done with partner
 - Project demo/interview during RRR week
 - Project report due around same time
- □ All Labs held by zoom
 - ASIC: M 5-8PM (GSI Sean)
 - FPGA: Tu 11AM-2PM, W 8AM-11AM (GSI Tan)
- □ All Labs start next week!

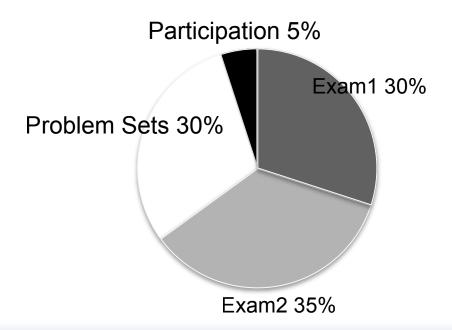
Exams

- Exam 1 scheduled in evening. No lecture that day.
- □ In lecture review session in advance.
 - Exam 1: Thur March 11 6PM-9PM
- □ Exam 2: tentatively schedule on Friday May 14, 7-10PM.

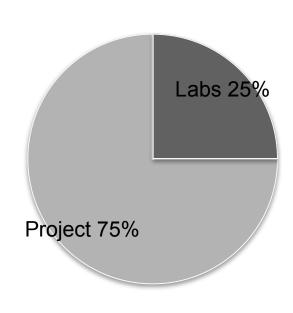
Exams formats TBA

Course Information

□ Piazza for interactions between Instructors and fellow students For fastest response post your questions on Piazza.

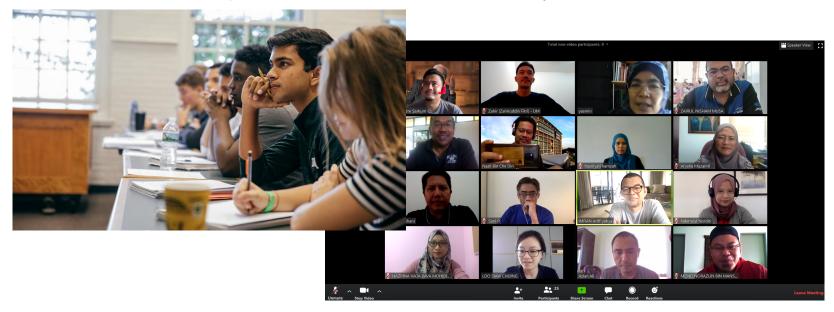

(make sure to register ASAP if you don't want to miss any of the action) http://piazza.com/berkeley/spring2021/eecs151251a

Cheating Policy


- Details of our cheating policy on the class web site. Please read it and ask questions.
- If you turn in someone else's work as if it were your own, you are guilty of cheating. This includes problem sets, answers on exams, lab exercise checks, project design, and any required course turn-in material.
- Also, if you knowingly aid in cheating, you are guilty.
- We have software that compares your submitted work to others.
- However, it is okay to discuss with others lab exercises and the project (obviously, okay to work with project partner). Okay to discuss homework with others. But everyone must turn in their own work.
- Do not post your work on public repositories like github (private o.k.)
- If we catch you cheating, you will get **negative points** on the assignment: It is better to not do the work than to cheat!
 If it is a midterm exam, final exam, or final project, you get an F in the class. All cases of cheating reported to the office of student conduct.

Grading Breakdown

Lecture



Participation

- 1. Be present at lectures
 - ask questions, offer comments
 - Virtual front-row requirement
- 2. Participation in discussion sessions
- 3. Post to piazza
 - help answer fellow student questions about problem sets, labs, project
 - contribute testing or other code to help in project debug

Virtual Front-row

□ Take turns sitting in "front-row" (keep your camera on for entire lecture and ask questions or offer comments)

- □ Everyone required to sign up for 4 lectures (link in piazza).
- □ Everyone is always welcome to join the front row.

Fixed Grading Standard for Undergrads

□ No-curve. No need to compete with others.

□ *Tentative*:

Α	90
A-	84
B+	77
В	71
B-	65
C+	58
С	52
C-	46
D+	39
D	33

Tips on How to Get a Good Grade

The <u>lecture material</u> is not the most challenging part of the course.

- You should be able to understand everything as we go along.
- Do not fall behind in lecture and tell yourself you "will figure it out later from the notes".
- Notes will be online before the lecture (usually the night before). Look at them before class.
- Ask questions in class and stay involved that will help you understand. Come to office hours to check your understanding or to ask questions.
- Complete all the homework problems even the difficult ones. Some problems go beyond lecture.
- The exams will test your depth of knowledge. You need to understand the material well enough to apply it in new situations.

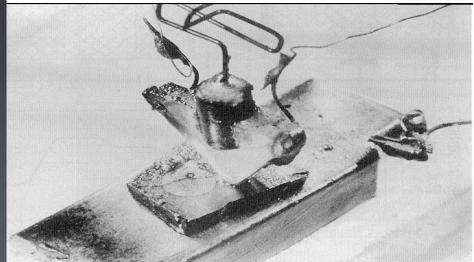
With a few exceptions, you need to enroll in both the lab and the lecture.

- Take the labs very seriously. They are an integral part of the course.
- Choose your project partner carefully. Your best friend may not be the best choice!
- Most important (this comes from 30+ years of hardware design experience):
 - Be well organized and neat with homework, labs, project.
 - In lab, add complexity a little bit at a time always have a working design.
 - Don't be afraid to throw away your design and start fresh.

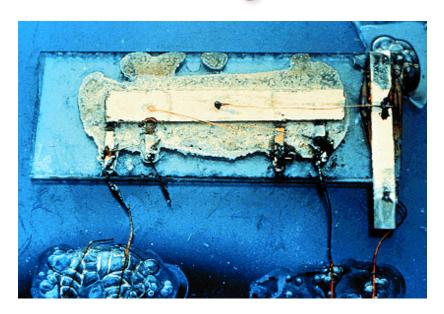
Getting Started

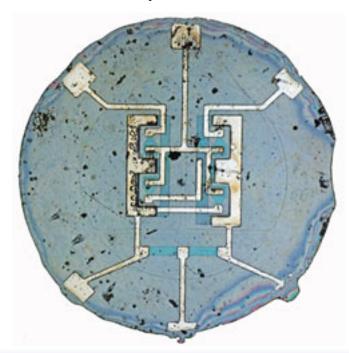
- Discussions start this week, labs next week.
- □ PS 1 assigned later this week
- Register on Piazza as soon as possible
- □ Register for your EECS151 class account at inst.eecs.berkeley.edu/webacct

Digital Integrated Circuits and Systems -From the Past to the Future

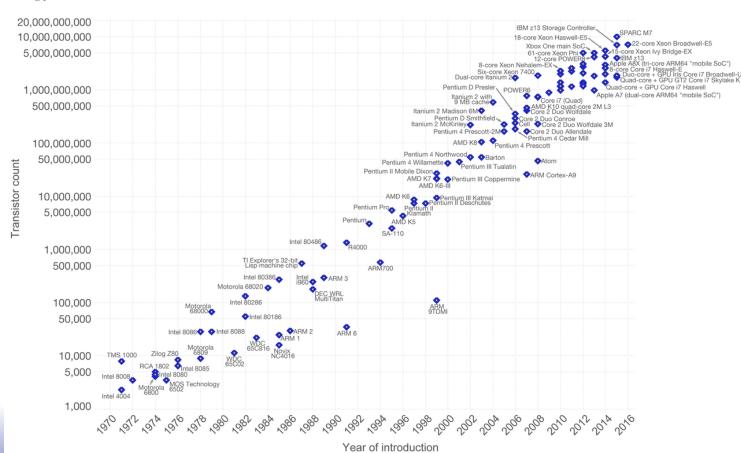

And then plenty more ...

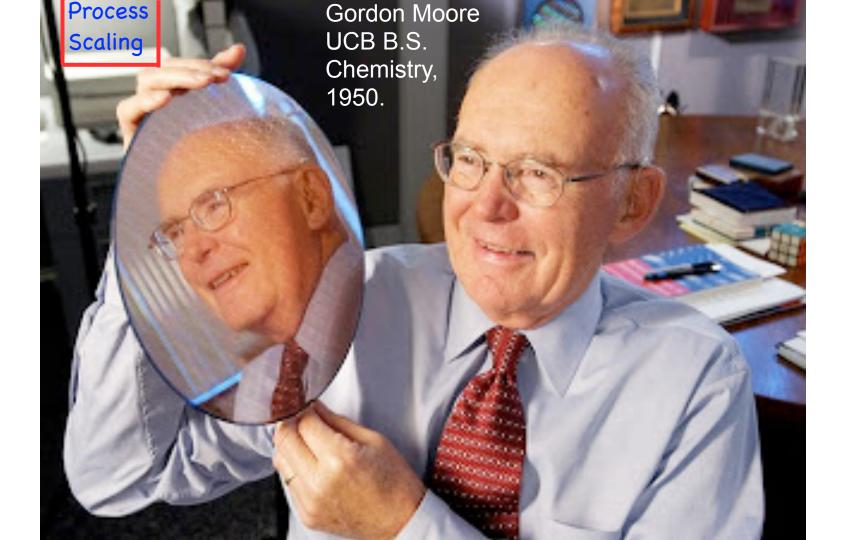
How did this all arise?

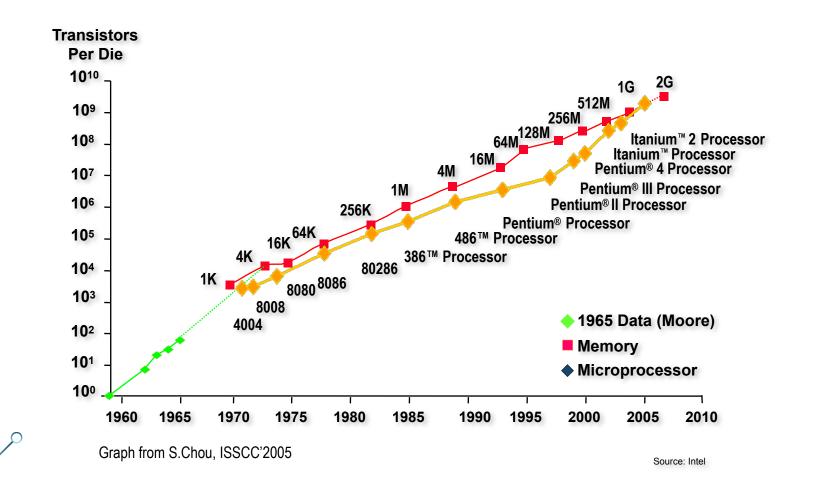

The Transistor Revolution


First transistor Bell Labs, Dec 1947

First Integrated Circuits (1958-59)

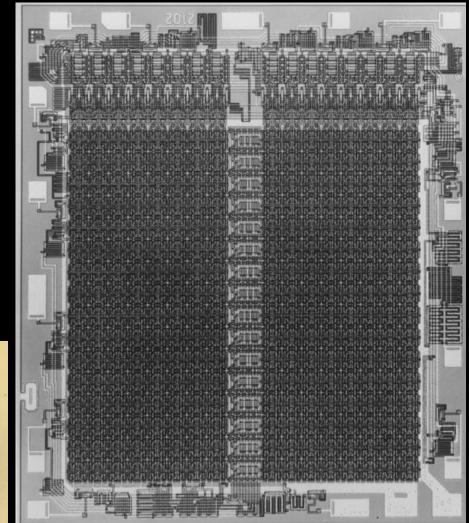

Jack Kilby, Texas Instruments


Bob Noyce, Fairchild


Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

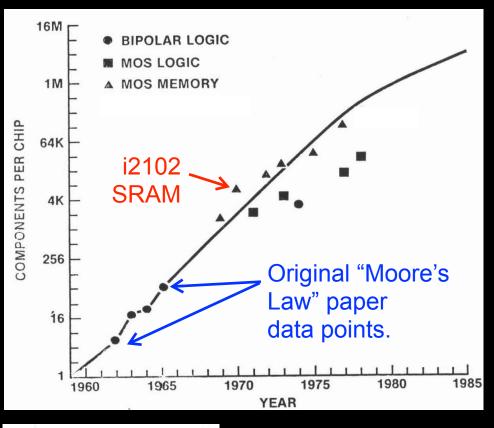
Moore's Law - applied to memory and logic



MOS in the 70s

1971 state of the art.

Intel 2102, a 1kb, 1 MHz static RAM chip with 6000 nFETs transistors in a 10 µm process.



By 1971, "Moore's Law" paper was already 6 years

old ...

But the result was empirical.

Understanding the physics of scaling MOS transistor dimensions was necessary ...

Are We Really Ready for VLSI²?

Gordon E. Moore
Intel Corporation

CALTECH CONFERENCE ON VLSI, January 1979

1974: Dennard Scaling

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-9, NO. 5, OCTOBER 1974

Design of Ion-Implanted MOSFET's with Very Small Physical Dimensions

ROBERT H. DENNARD, MEMBER, IEEE, FRITZ H. GAENSSLEN, HWA-NIEN YU, MEMBER, IEEE, V. LEO RIDEOUT, MEMBER, IEEE, ERNEST BASSOUS, AND ANDRE R. LEBLANC, MEMBER, IEEE

If we scale the gate length by a factor κ , how should we scale other aspects of transistor to get the "best" results?

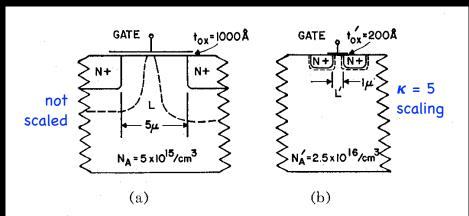
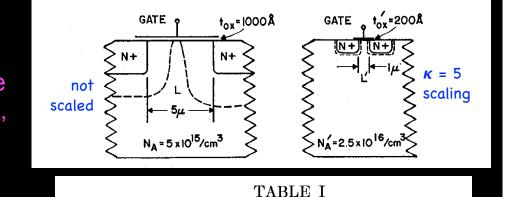



Fig. 1. Illustration of device scaling principles with $\kappa=5$. (a) Conventional commercially available device structure. (b) Scaled-down device structure.

Dennard

Scaling

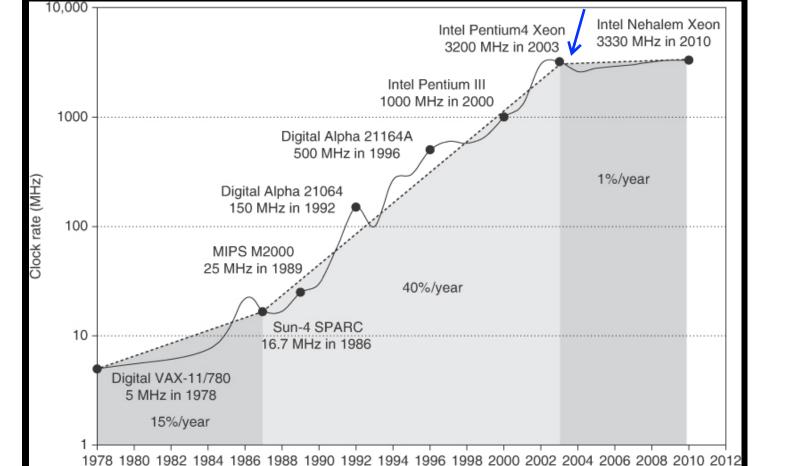
Things we do: scale dimensions, doping, Vdd.

What we get: κ^2 as many transistors at the same power density!

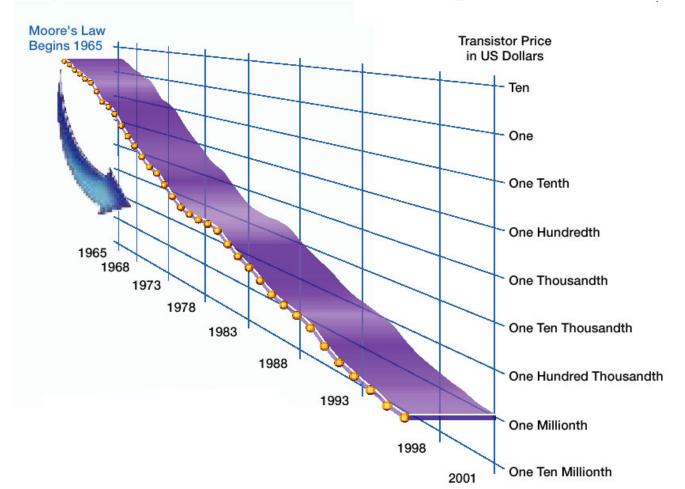
Whose gates switch κ times faster!

Scaling Results for Circuit Performance

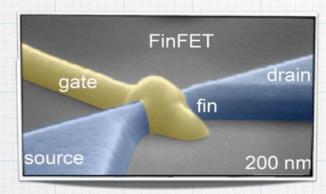
Device or Circuit Parameter Scaling Factor

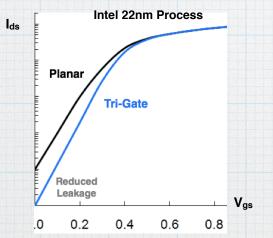

y transistors

Device dimension t_{ox} , L, WDoping concentration N_a Voltage V $1/\kappa$


 $\begin{array}{lll} \text{Current } I & 1/\kappa \\ \text{Capacitance } \epsilon A/t & 1/\kappa \\ \text{Delay time/circuit } VC/I & 1/\kappa \\ \text{Power dissipation/circuit } VI & 1/\kappa^2 \\ \text{Power density } VI/A & 1 \end{array}$

Power density scaling ended in 2003 (Pentium 4: 3.2GHz, 82W, 55M FETs).


Dennard Scaling ended ... when we hit the "power wall"



The Key Benefit of Moore's Law Scaling: Cost

Latest Modern Process

Transistor channel is a raised fin.

Gate controls channel from sides and top.

(12) United States Patent

Hu et al.

Filed:

Oct. 23, 2000

- (54) FINFET TRANSISTOR STRUCTURES HAVING A DOUBLE GATE CHANNEL EXTENDING VERTICALLY FROM A SUBSTRATE AND METHODS OF MANUFACTURE
- (75) Inventors: Chenming Hu, Alamo; Tsu-Jae King,
 Fremont; Vivek Subramanian,
 Redwood City; Leland Chang,
 Berkeley; Xuejue Huang; Yang-Kyu
 Choi, both of Albany; Jakub Tadeusz
 Kedzierski, Hayward; Nick Lindert,
 Berkeley; Jeffrey Bokor, Oakland, all
 of CA (US); Wen-Chin Lee, Beaverton,
 OR (US)

Semiconductor manufacturing processes

 $10 \, \mu m - 1971$ $6 \, \mu \text{m} - 1974$ $3 \mu m - 1977$ $1.5 \, \mu \text{m} - 1982$ $1 \, \mu m - 1985$ 800 nm - 1989 600 nm - 1994 350 nm - 1995 250 nm - 1997 180 nm - 1999 130 nm - 2001 90 nm - 2004 65 nm - 2006 45 nm - 2008 32 nm - 2010 22 nm - 2012 14 nm - 2014 10 nm - 2017 7 nm - 2018

5 nm - ~2020

, 7nm State of the Art

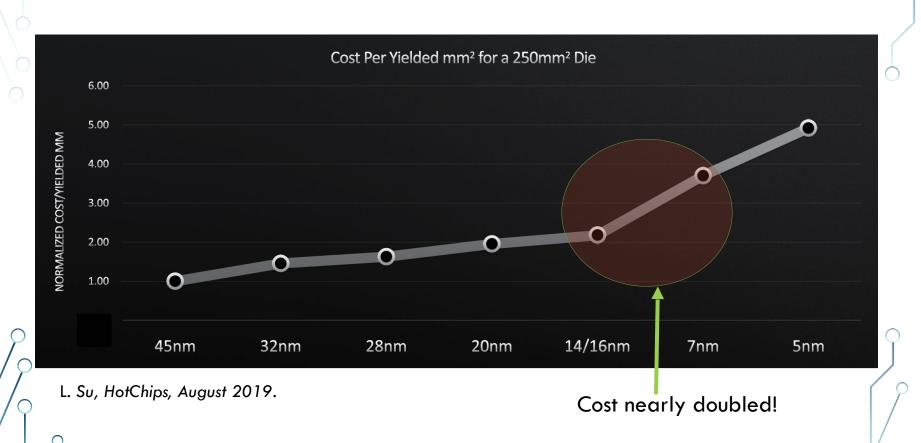
As of September 2018, mass production of 7 nm devices has begun. The first mainstream 7 nm mobile processor intended for mass market use, the Apple A12 Bionic, was released at their September 2018 event. Although Huawei announced its own 7 nm processor before the Apple A12 Bionic, the Kirin 980 on August 31, 2018, the Apple A12 Bionic was released for public, mass market use to consumers before the Kirin 980. Both chips are manufactured by TSMC. AMD is currently working on their "Rome" workstation processors, which are based on the 7 nanometer node and feature up to 64 cores.

> 5nm

The 5 nm node was once assumed by some experts to be the end of Moore's law.

Transistors smaller than 7 nm will experience quantum tunnelling through the gate oxide layer. Due to the costs involved in development, 5 nm is predicted to take longer to reach market than the two years estimated by Moore's law. Beyond 7 nm, it was initially claimed that major technological advances would have to be made to produce chips at this small scale. In particular, it is believed that 5 nm may usher in the successor to the FinFET, such as a gate-all-around architecture.

Although Intel has not yet revealed any specific plans to manufacturers or retailers, their 2009 roadmap projected an end-user release by approximately 2020. In early 2017, Samsung announced production of a 4 nm node by 2020 as part of its revised roadmap. On January 26th 2018, TSMC announced production of a 5 nm node by 2020 on its new fab 18. In October 2018, TSMC disclosed plans to start risk production of 5 nm devices in April 2019.


FinFET

Planar

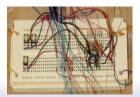
▶ 3.5nm

3.5 nm is a name for the first node beyond 5 nm. In 2018, IMEC and Cadence had taped out 3 nm test chips. Also, Samsung announced that they plan to use Gate-All-Around technology to produce 3 nm FETs in 2021.

Recent Cost Trend

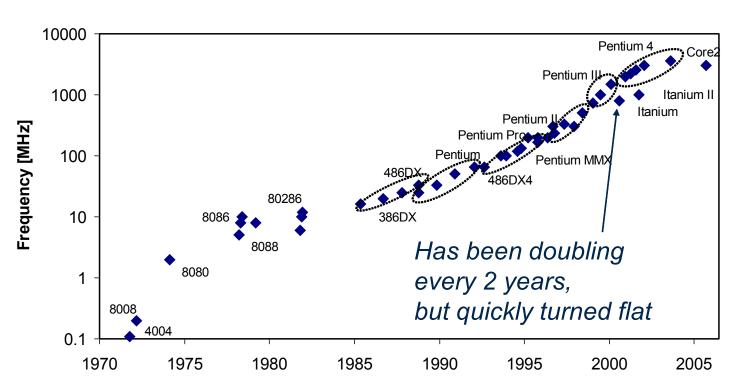
CS150/EECS151 Project Complexity

2010-2017 MIPS CPU or BYO 1M logic gates


2018 MIPS CPU Programmable SOC: dual-core ARM, 85K logic cells, 220 MACC

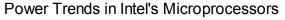
1995 MIDI synthesizer 1000's of logic gates

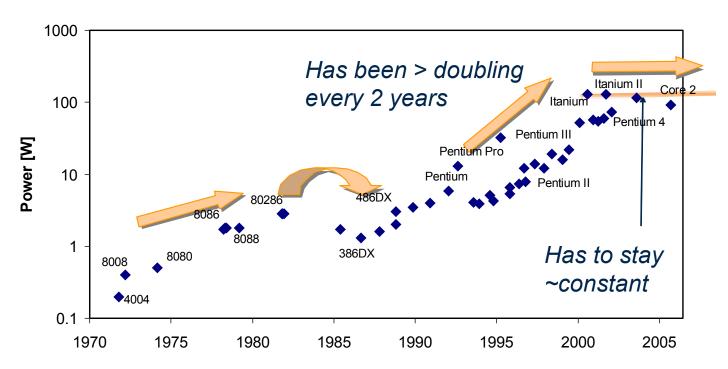
2000-2010 eTV tuner 10K's logic gates

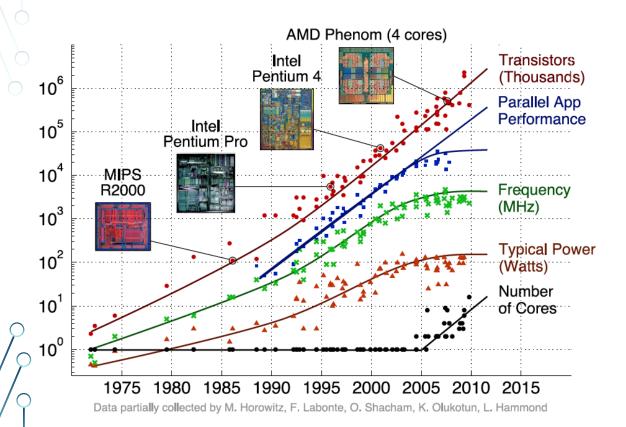


1980 Pong game 10's of logic gates

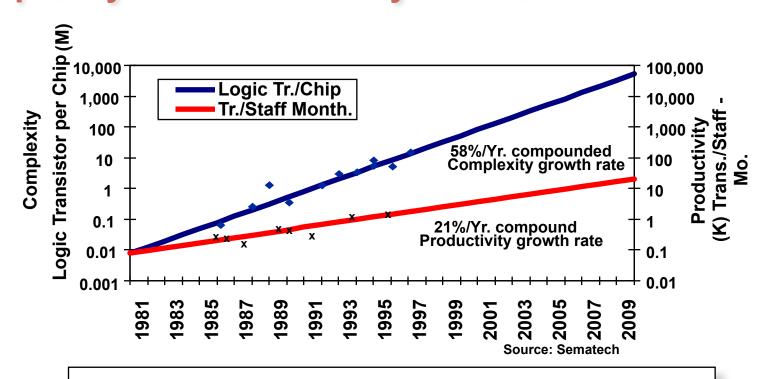
The other outcomes


Frequency

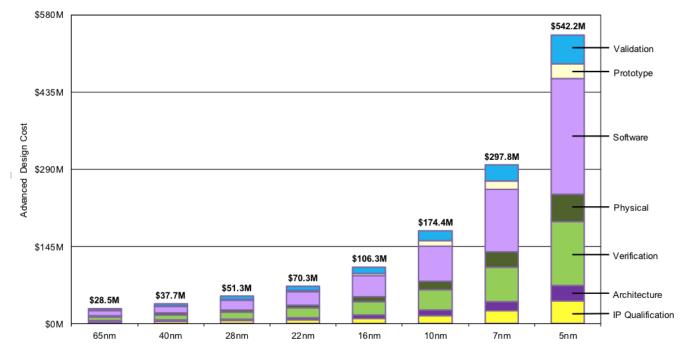

Frequency Trends in Intel's Microprocessors



Power Dissipation


Power and Performance Trends

For reasons of power efficiency, performance scaling now comes from multiple cores and "accelerators", not from higher clock frequency.


The other Demon: Complexity

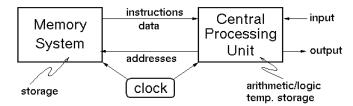
Complexity and Productivity Trends

Complexity outpaces design productivity

Cost Of Developing New Products

• These are non-recurring (NRE) costs, need to be amortized over the lifetime of a product

The answers


- Design methodology!
 - Abstraction
 - Hierarchy
 - Reuse
- Computer Aided Design tools

Digital System Design: A few basic concepts

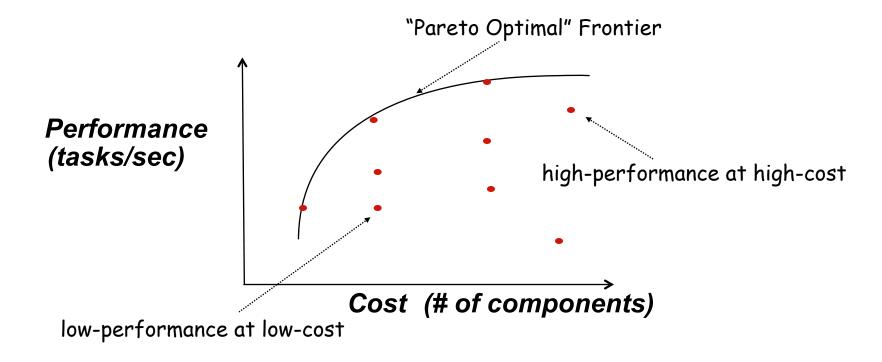
Example Digital Systems

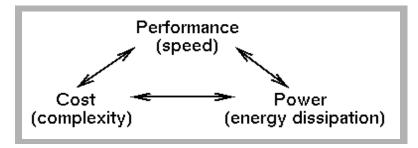
General Purpose Server

- Designed to maximize performance -"Optimized for speed".
- Expensive and high power
- Handheld Calculator

- Usually designed to minimize cost."Optimized for low cost"
- Of course, low cost comes at the expense of speed.

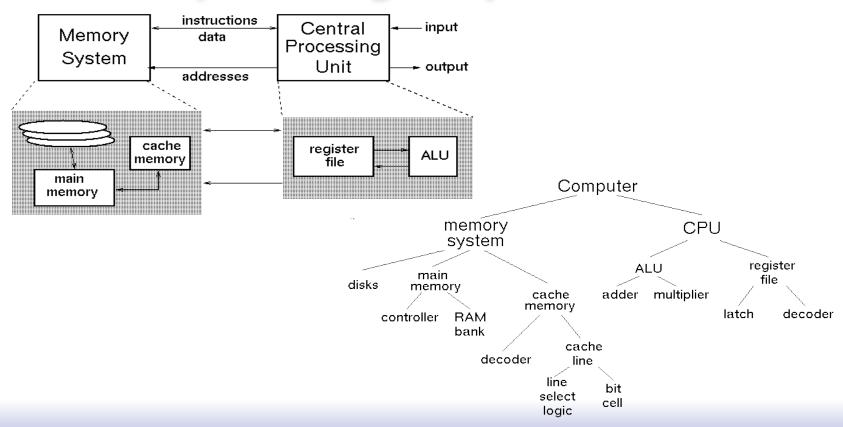
Example Digital Systems


□ Digital Watch


Designed to minimize power. Single battery must last for years.

- Low power operation comes at the expense of:
 - lower speed
 - higher cost

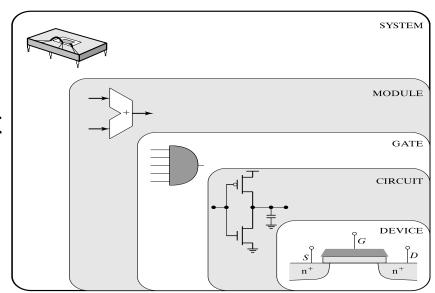
Design Space & Optimality

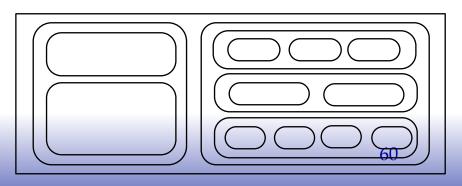


Basic Design Tradeoffs

- Improve on one at the expense of the others
- Tradeoffs exist at every level in the system design
- Design Specification
 - Functional Description
 - Performance, cost, power constraints
- Designer must make the tradeoffs needed to achieve the function within the constraints

Hierarchy & Design Representation


Hierarchy in Designs - Complexity Control

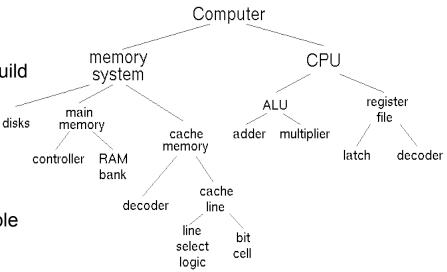

Design Abstraction

 Hide details and reduce number of things to handle at any time

- Divide and conquer
- Simplifies implementation and debugging

Design Methodologies

Top-Down Design


 Starts at the top (root) and works down by successive refinement.

□ Bottom-up Design

 Starts at the leaves & puts pieces together to build up the design.

■ Which is better?

- In practice both are needed & used
- Top-down to handle the complexity (divide and conquer)
- Bottom-up since structure influenced by available primitives (in a well designed system)

Digital Design: What's it all about?

Given a functional description and performance, cost, & power constraints, come up with an implementation using a set of primitives.

- How do we learn how to do this?
 - 1. Learn about the primitives and how to use them.
 - 2. Learn about design representations.
 - 3. Learn formal methods and tools to manipulate the representations.
 - 4. Look at design examples.
 - 5. Use trial and error CAD tools and prototyping. Practice!
- Digital design is in some ways more an art than a science. The creative spirit is critical in combining primitive elements & other components in new ways to achieve a desired function.
- However, unlike art, we have objective measures of a design:

End of Lecture 1