
EE141

EECS 151/251A 
Spring	2021  
Digital	Design	and	Integrated	
Circuits
Instructor:		
John	Wawrzynek

Lecture 14: RISC-V Part 2

EE141

Announcements
❑ Virtual Front Row today, 3/4:
❑ Tony Kam
❑ Ben Tait
❑ Robin Chu
❑ Neil Kulkarni
❑ Robert Puccinelli

❑ HW6 posted (due Monday)
❑ Midterm Reminder
❑ Format TBD

❑ No HW next week
 2

Implementing	Branches

• B-format	is	mostly	same	as	S-Format,	with	two	register	sources	(rs1/rs2)	and	a	12-bit	
immediate	

• But	now	immediate	represents	values	-4096	to	+4094	in	2-byte	increments	

• The	12	immediate	bits	encode	even	13-bit	signed	byte	offsets	(lowest	bit	of	offset	is	
always	zero,	so	no	need	to	store	it)	 �3

Uses the “B-type” instruction format

• RISC-V	Assembly	Instruction,	example:	
beq rs1, rs2, label
if rs1==rs2 pc ← pc + offset // offset computed by compiler/assembler and

stored in the immediate field(s)

example:
beq x1, x2, L1

Review:	Adding	sw	to	datapath

�4

IMEM
ALU

Imm.	
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR 0

1pc
0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wbpc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn Bsel ALUSel MemRW WBSel=

wb

Adding	branches	to	datapath

�5

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1

1

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb

Adding	branches	to	datapath

�6

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1

1

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wb

alu

pc+4

pc

imm[31:0]

Reg[rs2]

wb

inst[31:0] ImmSel=B RegWEn=0 BrUn BrEq BrLT ASel=1Bsel=1

ALUSel=Add

MemRW=Read WBSel=*PCSel=taken/not-taken

Reg[rs1]

Branch	Comparator
• BrEq	=	1,	if	A=B	
• BrLT	=	1,	if	A	<	B	
• BrUn	=1	selects	unsigned	comparison	
for	BrLT,	0=signed	

• BGE	branch:	A	>=	B,	if		!(A<B)

�7

Branch	
Comp.

A

B

BrUn BrEq BrLT

RISC-V	Immediate	Encoding

�8

Instruction	Encodings,	inst[31:0]

32-bit	immediates	produced,	imm[31:0]

Only	bit	7	of	instruction	changes	role	in	
immediate	between	S	and	BUpper	bits	sign-extended	from	inst[31]	always

Implementing	JALR	Instruction	(I-Format)

• JALR	rd,	rs,	immediate	
−Writes	PC+4	to	Reg[rd]	(return	address)	
− Sets	PC	=	Reg[rs1]	+	offset	
− Uses	same	immediates	as	arithmetic	and	loads	
▪ no	multiplication	by	2	bytes

�9

Review:	Adding	branches	to	datapath

�10

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1

1

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wb

alu

pc+4

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb
Reg[rs1]

�11

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

01

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb

Adding	jalr	to	datapath

0
1
2

pc+4

Adding	jalr	to	datapath

�12

IMEM
ALU

Imm.	
Gen

+4

DMEM

Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1
21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=B RegWEn=1

BrUn=* BrEq=* BrLT=*

Asel=0Bsel=1

ALUSel=Add

MemRW=Read WBSel=2PCSel

wb

Implementing	jal	Instruction

• JAL	saves	PC+4	in	Reg[rd]	(the	return	address)	
• Set	PC	=	PC	+	offset	(PC-relative	jump)	
• Target	somewhere	within		±219	locations,	2	bytes	apart	
− 	±218	32-bit	instructions	

• Immediate	encoding	optimized	similarly	to	branch	instruction	
to	reduce	hardware	cost

�13

Uses the “J-type” instruction format

Adding	jal	to	datapath

�14

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1
21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb
Reg[rs1]

Adding	jal	to	datapath

�15

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1
21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=J RegWEn=1

BrUn=* BrEq=* BrLT=*

Asel=1Bsel=1

ALUSel=Add

MemRW=Read WBSel=2PCSel

wb

Single-Cycle	RISC-V	RV32I	Datapath

�16

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1
21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb
Reg[rs1]

EE141

Controller Implementation:
❑ Control logic works really well as a case

statement... 
always @* begin  
 op = instr[26:31];  
 imm = instr[15:0]; ...  
  
 reg_dst = 1'bx; // Don't care  
 reg_write = 1'b0; // By default don’t write 
 ...  
 case (op)  
 6'b000000: begin reg_write = 1; ... end 
 ...

 17

EE141

Processor Pipelining

EE141

Review: Processor Performance

 Program Execution Time

 = (# instructions)(cycles/instruction)(seconds/cycle)

 = # instructions x CPI x TC

 19

EE141

Single-Cycle Performance
• TC is limited by the critical path (lw)

 20

EE141

Single-Cycle Performance

• Single-cycle critical path:

 Tc = tq_PC + tmem + max(tRFread, tsext + tmux) + tALU +
tmem + tmux + tRFsetup

• In most implementations, limiting paths are:

– memory, ALU, register file.
– Tc = tq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

 21

EE141

Pipelined Processor

• Use temporal parallelism
• Divide single-cycle processor into 5 stages:
– Fetch
– Decode
– Execute
– Memory
–Writeback
• Add pipeline registers between stages

 22

EE141

Single-Cycle vs. Pipelined Performance

 23

EE141

Single-Cycle and Pipelined Datapath

 24

EE141

Corrected Pipelined Datapath
• WriteReg must arrive at the same time as Result

 25

EE141

Pipelined Control

Same control unit as single-cycle processor

Control delayed to proper pipeline stage 26

EE141

Pipeline Hazards
❑ Occurs when an instruction depends on results from

previous instruction that hasn’t completed.
❑ Types of hazards:
–Data hazard: register value not written back to

register file yet
–Control hazard: next instruction not decided yet

(caused by branches)

 27

We need to design ways to avoid hazards, else we pay the price in
CPI (cycles per instruction) and processor performance suffers.

EE141

Processor Pipelining

 28

IF1 IF2 ID X1 X2 M1 M2 WB
IF1 IF2 ID X1 X2 M1 M2 WB

Deeper pipelines => less logic per stage => high clock rate.

Deeper pipeline example.

Deeper pipelines* => more hazards => more cost and/or higher CPI.

Remember, Performance = # instructions X Frequencyclk / CPI

But

Cycles per instruction might go up because of unresolvable hazards.

How about shorter pipelines ... Less cost, less performance (but higher cost efficiency)

*Many designs included pipelines as long as 7, 10 and even 20 stages (like in the Intel Pentium 4). The later
"Prescott" and "Cedar Mill" Pentium 4 cores (and their Pentium D derivatives) had a 31-stage pipeline.

http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Pentium_4
http://en.wikipedia.org/wiki/Pentium_D

EE141

3-Stage Pipeline

EE141

3-Stage Pipeline (used for FPGA/ASIC project)

 30

I X M

The blocks in the datapath with the greatest
delay are: IMEM, ALU, and DMEM. Allocate
one pipeline stage to each:

Use PC register as address
to IMEM and retrieve next

instruction. Instruction gets
stored in a pipeline register,

also called “instruction
register”, in this case.

Most details you will need to work out for yourself. Some details to follow ...
In particular, let’s look at hazards.

Access data memory or I/O
device for load or store.
Allow for setup time for
register file write.

Use ALU to compute
result, memory

address, or branch
target address.

EE141

3-stage Pipeline

 31

 add x5, x3, x4 I X M
 add x7, x6, x5 I X M

reg 5 value updated herereg 5 value needed here!

Data Hazard

Selectively forward ALU result back to input of ALU.

The fix:

• Need to add mux at input
to ALU, add control logic to
sense when to activate.
Check reference for
details.

ALU

control

EE141

3-stage Pipeline

 32

 lw x5, offset(x4) I X M
I X M

Memory value known here. It is
written into the regfile on this edge.

value needed here!

Load Hazard

 add x7, x6, x5

 lw x5, offset(x4) I X M
I nop nop

I X M
 add x7, x6, x5
 add x7, x6, x5

The fix: Delay the dependent instruction by one cycle to
allow the load to complete, send the result of
load directly to the ALU (and to the regfile). No
delay if not dependent!

EE141

Control Hazard3-stage Pipeline

 33

 beq x1, x2, L1 I X M
 add x5, x3, x4 I X M

add x6, x1, x2 I X M
L1: sub x7, x6, x5 I X

branch address ready herebut needed here!

The fix:
Several Possibilities:*
1. Always delay fetch of instruction after branch
2. Assume branch “not taken”, continue with instruction

at PC+4, and correct later if wrong.
3. Predict branch taken or not based on history (state)

and correct later if wrong.

1. Simple, but all branches now take 2 cycles (lowers performance)
2. Simple, only some branches take 2 cycles (better performance)
3. Complex, very few branches take 2 cycles (best performance)

* MIPS defines “branch delay slot”, RISC-V doesn’t

EE141

Control HazardPredict “not taken”

 34

 bneq x1, x1, L1 I X M
 add x5, x3, x4 I X M

add x6, x1, x2 I X M
L1: sub x7, x6, x5 I X

 beq x1, x1, L1 I X M
 add x5, x3, x4 I nop nop
L1: sub x7, x6, x5 I X M

Branch address ready at end of X stage:
• If branch “not taken”, do nothing.
• If branch “taken”, then kill instruction in I stage (about to

enter X stage) and fetch at new target address (PC)

Not taken

Taken

EE141

EECS151 Project CPU Pipelining Summary

❑ Pipeline rules:
–Writes/reads to/from DMem are clocked on the leading

edge of the clock in the “M” stage
–Writes to RegFile at the end of the “M” stage
– Instruction Decode and Register File access is up to you.

❑ Branch: predict “not-taken”

❑ Load: 1 cycle delay/stall on dependent instruction

❑ Bypass ALU for data hazards

❑ More details in upcoming spec
 35

I X M
instruction

fetch
execute access

data
memory

3-stage
pipeline

EE141

End of Lecture 14

 36

