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Announcements
❑ Virtual Front Row for today 4/1: 

❑ Bernard Chen 
❑ Matthew Tran 
❑ Jennifer Zhou 
❑ Suphakorn Lertruchtkul 
❑ Rahul Arya 

❑ Please ask question or make 
comments! 

❑ Homework assignment 7 (power & 
memory) posted due Monday. 
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Parallelism 

• Example, Student final grade calculation: 
  read mt1, mt2, mt3, project; 
  grade = 0.2 × mt1 + 0.2 × mt2  
    + 0.2 × mt3 + 0.4 × project; 
  write grade; 
• High performance hardware implementation:

As many operations as possible are done in parallel.

Parallelism is the act of doing more than one thing at a time. 
Optimization in hardware design often involves using  
parallelism to trade between cost and performance.   

Parallelism can often also be used to improve energy efficiency.
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A log(n) lower (time) bound to compute  
 any function of n variables

❑ Assume we can only use binary operations, each taking 
unit time 

❑ After 1 time unit, an output can only depend on two inputs 
❑ Use induction to show that after k time units, an output 

can only depend on 2k inputs 
▪ After log2 n time units, output depends on at most n inputs 

❑ A binary tree performs such a computation
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Example: Reductions with Trees

N

log2 N

If each node (operator) is k-ary instead of binary, what is the delay?
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Trees for optimization
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x0

x1 x2 x3 x4 x5 x6 x7

T = O(N) 

 +  +

 +
 +  +

 +

 +

T = O(log N) 

(( x0 + x1 ) + ( x2 + x3 )) + (( x4 + x5 ) + ( x6 + x7 ))

((((((x0 + x1 ) + x2 ) + x3 ) + x4 ) + x5 ) + x6 ) + x7 

❑ What property of “+” are we exploiting? 
❑ Other associate operators?  Boolean operations?  Division?  Min/Max? 

Same number of 
operations (N-1)
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Parallelism
• Is there a lower cost hardware 

implementation?  Different tree organization?   
• grade = ((0.2 × mt1)+(0.2 × mt2))

+((0.2 × mt3)+(0.4 × proj));

!7

• Can factor out multiply by 0.2 
(use factoring and associativity): 

• How about sharing operators (multipliers and adders)?

• grade = (0.2 × ((mt1 + mt2)  + 
mt3))) + (0.4 × proj);

• Compare the cost and critical path in both 
implementations.
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Time-Multiplexing
• Time multiplex single ALU for 

all adds and multiplies: 
• Attempts to minimize cost at 

the expense of time. 
– Need to add extra register, 

muxes, control.

• If we adopt above approach, we can then consider the combinational 
hardware circuit diagram as an abstract computation-graph. 

• This time-multiplexing “covers” the computation graph by performing 
the action of each node one at a time.  (Sort of emulates it.)

Using other primitives, other 
coverings are possible.
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HW versus SW
• This time-multiplexed ALU 

approach is very similar to what 
a conventional software version 
would accomplish: 

• CPUs time-multiplex function 
units (ALUs, etc.)

add r2,r1,r3 
add r2,r2,r4 
mult r2,r4,r5 
  .   .   .

• This model matches our tendency to express computation sequentially - 
even though most computations naturally contain parallelism. 

• Our programming languages also strengthen a sequential tendency. 
• In hardware we have the ability to exploit problem parallelism - gives us a 

“knob” to tradeoff performance & cost. 
• Maybe best to express computations as abstract computations graphs 

(rather than “programs”) - should lead to wider range of implementations. 
• Note: modern high-performance processors spend much of their cost 

budget attempting to restore execution parallelism: “super-scalar 
execution”.
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Exploiting Parallelism in HW
• Example: Video Codec 

• Separate algorithm blocks implemented in separate HW blocks, 
or HW is time-multiplexed.   

• Entire operation is pipelined (with possible pipelining within the 
blocks).   

• “Loop unrolling used within blocks” or for entire computation.
!10
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Optimizing Iterative Computations
• Hardware implementations of computations almost always 

involves looping.  Why? 

• Is this true with software? 

• Are there programs without loops?   
– Maybe in “through away” code. 

• We probably would not bother building such a thing into 
hardware, would we?   
– (FPGA could change this.) 

• Fact is, our computations are closely tied to loops.  Almost 
all our HW includes some looping mechanism. 

• What do we use looping for?
!11
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Optimizing Iterative Computations
Types of loops: 
1) Looping over input data (streaming): 

– ex: MP3 player, video compressor 
2) Looping over memory data 

– ex: vector inner product, matrix multiply, list-processing 
• 1) & 2) are really very similar.  1) is often turned into 2) by buffering up input 

data, and processing “offline”.  Even for “online” processing, buffers are used to 
smooth out temporary rate mismatches. 

3) CPUs are one big loop. 
– Instruction fetch ⇒ execute ⇒ Instruction fetch ⇒ execute  ⇒ … 
– but change their personality with each iteration. 

4) Others?

Loops offer opportunity for parallelism 
 by executing more than one iteration at once, 
 using parallel iteration execution &/or pipelining

!12
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Pipelining Principle
• With looping usually we are less interested in the latency of one iteration 

and more in the loop execution rate, or throughput. 
• These can be different due to parallel iteration execution &/or pipelining. 
• Pipelining review from CS61C: 
 Analog to washing clothes: 
   step 1: wash (20 minutes) 
   step 2: dry (20 minutes) 
   step 3: fold (20 minutes) 
      60 minutes x 4 loads ⇒ 4 hours 

  wash load1  load2  load3  load4 
  dry            load1  load2  load3  load4 
  fold           load1  load2  load3  load4 
   20 min 

       overlapped ⇒ 2 hours

!13
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Pipelining

  wash load1  load2  load3  load4 
  dry            load1  load2  load3  load4 
  fold           load1  load2  load3  load4 

• In the limit, as we increase the number of loads, the average time per 
load approaches 20 minutes (1 load completed every 20 minutes) 

• The latency (time from start to end) for one load = 60 min. 
• The throughput = 3 loads/hour 

• The pipelined throughput ≈ # of pipe stages x un-pipelined throughput.

!14
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Hardware Pipelining Example
• Starting Design: 

• Cut the CL block into pieces (stages) and separate with registers: 

   
  T’ = 4ns + 1ns + 4ns +1ns = 10ns 
  F = 1/(4ns +1ns) = 200MHz 

• CL block produces a new result every 5ns instead of every 9ns.

Assume T=8ns 
TFF(setup +clk→q)=1ns 
F = 1/9ns = 111MHz

Assume T1 = T2 = 4ns

!15
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Limits on Pipelining
• Without FF overhead, throughput improvement α # of stages. 
• After many stages are added FF overhead begins to dominate: 

• Other limiters to effective pipelining: 
– clock skew contributes to clock overhead 
– unequal stages 
– FFs dominate cost 
– clock distribution power consumption 
– feedback (dependencies between loop iterations) - in CPUs, we these data hazards

FF “overhead” 
is the setup and  
clk to Q times.

!16
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Pipelining Example
• F(x) = yi  = a xi

2 + b xi + c 

• x and y are assumed to be 
“streams” of integers (or floats) 

• Divide into 3 (nearly) equal stages. 
• Insert pipeline registers at dashed 

lines. 

• Can we pipeline basic operators?

• Computation graph:

!17
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Example: Pipelined Ripple Adder

• Possible, but usually not done. 
(arithmetic units can often be made sufficiently fast without internal pipelining) 
More common to pipeline multiplication.

!18

Insert pipeline register

• Critical path cut in half 
• Latency now two cycles 
• Cost and energy increases by adding registers
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Pipelining Loops with Feedback

• Example 1:  yi = yi-1 + xi + a 
  
 unpipelined version: 
 add1   xi+yi-1        xi+1+yi 

 add2               yi                    yi+1  

Can we “cut” the feedback and 
overlap iterations? 

Try putting a register after add1: 
 add1   xi+yi-1           xi+1+yi 

 add2               yi                          yi+1 

“Loop carry dependency”

• Can’t overlap the 
iterations because of 
the dependency. 

• The extra register 
doesn’t help the 
situation (actually 
hurts). 

• In general, can’t 
effectively pipeline 
feedback loops.

!19
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Pipelining Loops with Feedback

However, we can overlap the “non-
feedback” part of the iterations: 

Add is associative and communitive.  
Therefore we can reorder the 
computation to shorten the delay 
of the feedback path: 

 yi  =  (yi-1 + xi) + a  =  (a + xi) + yi-1 

    add1    xi+a   xi+1+a   xi+2+a  

      add2              yi              yi+1       yi+2

• Pipelining is limited to 2 stages.

“Loop carry dependency”

“Shorten” the 
feedback path.

!20
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Pipelining Loops with Feedback
• Example 2: 
   yi = a yi-1 + xi + b 

add1     xi+b                   xi+1+b                 xi+2+b 
mult    ayi-1                   ayi                                 ayi+1 

add2                         yi                       yi+1                              yi+2

• Reorder to shorten the feedback 
loop and try putting register after 
multiply: 

• Just said we can’t - but let’s anyway. 

• Still need 2 cycles/iteration

!21
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“C-slow” Technique
• An approach to increasing throughput in the presence of feedback: try to 

fill in “holes” in the chart with another (independent) computation: 

add1     xi+b                   xi+1+b                 xi+2+b 
mult    ayi-1                   ayi                                 ayi+1 

add2                         yi                       yi+1                              yi+2 
If we have a second similar computation, can interleave it with the first: 

• Here the feedback depth=2 cycles (we say C=2). 
• Each loop has throughput of Fclk/C.  But the aggregate throughput is Fclk. 
• With this technique we could pipeline even deeper, assuming we could 

supply C independent streams.

F1x1 y1 = a1 y1
i-1 + x1

i + b1

F2x2 y2 = a2 y2
i-1 + x2

i + b2

Use muxes to direct each stream. 
Time multiplex one piece of HW 
for both stream. 
  Each produces 1 result / 2 cycles.

!22
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“C-slow” Technique
• Essentially this means we go 

ahead and cut feedback path: 

• Interleaving makes operations in 
adjacent pipeline stages 
independent and allows full cycle 
for each:

• C computations (in this case 
C=2) can use the pipeline 
simultaneously.   

• Must be independent. 
• Input MUX interleaves input 

streams.   
• Each stream runs at half the 

pipeline frequency. 
• Pipeline achieves full 

throughput.

add1     x+b       x+b       x+b      x+b       x+b       x+b 
mult    ay         ay              ay        ay         ay              ay 
add2          y           y                y          y           y                 y 

!23

Multithreaded Processors use this.
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Beyond Pipelining - SIMD Parallelism
• An obvious way to exploit more parallelism from loops is to make multiple 

instances of the loop execution data-path and run them in parallel, sharing the 
some controller. 

• For P instances, throughput improves by a factor of P. 
• example:  yi = f(xi) 

• Assumes the next 4 x values available at once.  The validity of this assumption 
depends on the ratio of f repeat rate to input rate (or memory bandwidth). 

• Cost α P.  Usually, much higher than for pipelining.  However, potentially 
provides a high speedup.  Often applied after pipelining. 

• Vector processors use this technique.  
• Limited, once again, by loop carry dependencies.  Feedback translates to 

dependencies between parallel data-paths.

f

yi

xi

f

yi+1

xi+1

f

yi+2

xi+2

f

yi+3

xi+3 Usually called SIMD 
parallelism.  Single 
Instruction Multiple Data

!24
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SIMD Parallelism with Feedback 
• Example, from earlier: 
  yi = a yi-1 + xi + b 

• As with pipelining, this technique is most effective in the absence of a 
loop carry dependence.  

• With loop carry dependence, end up with “carry ripple” situation. 
• For associative operations we can employ look-ahead / parallel-prefix 

optimization techniques to speed up propagation (coming soon!)
!25


