
EE141

EECS 151/251A 
Spring	2021  
Digital	Design	and	Integrated	Circuits

Instructor:		
John	Wawrzynek

Lecture 19: Parallelism

EE141

Announcements
❑ Virtual Front Row for today 4/1:

❑ Bernard Chen
❑ Matthew Tran
❑ Jennifer Zhou
❑ Suphakorn Lertruchtkul
❑ Rahul Arya

❑ Please ask question or make
comments!

❑ Homework assignment 7 (power &
memory) posted due Monday.

 2

Spring 2021 EECS151/251A Page

Parallelism

• Example, Student final grade calculation:
 read mt1, mt2, mt3, project;
 grade = 0.2 × mt1 + 0.2 × mt2
 + 0.2 × mt3 + 0.4 × project;
 write grade;
• High performance hardware implementation:

As many operations as possible are done in parallel.

Parallelism is the act of doing more than one thing at a time.
Optimization in hardware design often involves using
parallelism to trade between cost and performance.

Parallelism can often also be used to improve energy efficiency.

!3

EE141
Demmel - CS267 Lecture 6+

A log(n) lower (time) bound to compute  
 any function of n variables

❑ Assume we can only use binary operations, each taking
unit time

❑ After 1 time unit, an output can only depend on two inputs
❑ Use induction to show that after k time units, an output

can only depend on 2k inputs
▪ After log2 n time units, output depends on at most n inputs

❑ A binary tree performs such a computation

EE141
Demmel - CS267 Lecture 6+

Example: Reductions with Trees

N

log2 N

If each node (operator) is k-ary instead of binary, what is the delay?

EE141

Trees for optimization

 6

 + + + + + + +
x0

x1 x2 x3 x4 x5 x6 x7

T = O(N)

 + +

 +
 + +

 +

 +

T = O(log N)

((x0 + x1) + (x2 + x3)) + ((x4 + x5) + (x6 + x7))

((((((x0 + x1) + x2) + x3) + x4) + x5) + x6) + x7

❑ What property of “+” are we exploiting?
❑ Other associate operators? Boolean operations? Division? Min/Max?

Same number of
operations (N-1)

Spring 2021 EECS151/251A Page

Parallelism
• Is there a lower cost hardware

implementation? Different tree organization?
• grade = ((0.2 × mt1)+(0.2 × mt2))

+((0.2 × mt3)+(0.4 × proj));

!7

• Can factor out multiply by 0.2
(use factoring and associativity):

• How about sharing operators (multipliers and adders)?

• grade = (0.2 × ((mt1 + mt2) +
mt3))) + (0.4 × proj);

• Compare the cost and critical path in both
implementations.

Spring 2021 EECS151/251A Page

Time-Multiplexing
• Time multiplex single ALU for

all adds and multiplies:
• Attempts to minimize cost at

the expense of time.
– Need to add extra register,

muxes, control.

• If we adopt above approach, we can then consider the combinational
hardware circuit diagram as an abstract computation-graph.

• This time-multiplexing “covers” the computation graph by performing
the action of each node one at a time. (Sort of emulates it.)

Using other primitives, other
coverings are possible.

!8

Spring 2021 EECS151/251A Page

HW versus SW
• This time-multiplexed ALU

approach is very similar to what
a conventional software version
would accomplish:

• CPUs time-multiplex function
units (ALUs, etc.)

add r2,r1,r3
add r2,r2,r4
mult r2,r4,r5
 . . .

• This model matches our tendency to express computation sequentially -
even though most computations naturally contain parallelism.

• Our programming languages also strengthen a sequential tendency.
• In hardware we have the ability to exploit problem parallelism - gives us a

“knob” to tradeoff performance & cost.
• Maybe best to express computations as abstract computations graphs

(rather than “programs”) - should lead to wider range of implementations.
• Note: modern high-performance processors spend much of their cost

budget attempting to restore execution parallelism: “super-scalar
execution”.

!9

Spring 2021 EECS151/251A Page

Exploiting Parallelism in HW
• Example: Video Codec

• Separate algorithm blocks implemented in separate HW blocks,
or HW is time-multiplexed.

• Entire operation is pipelined (with possible pipelining within the
blocks).

• “Loop unrolling used within blocks” or for entire computation.
!10

Spring 2021 EECS151/251A Page

Optimizing Iterative Computations
• Hardware implementations of computations almost always

involves looping. Why?

• Is this true with software?

• Are there programs without loops?
– Maybe in “through away” code.

• We probably would not bother building such a thing into
hardware, would we?
– (FPGA could change this.)

• Fact is, our computations are closely tied to loops. Almost
all our HW includes some looping mechanism.

• What do we use looping for?
!11

Spring 2021 EECS151/251A Page

Optimizing Iterative Computations
Types of loops:
1) Looping over input data (streaming):

– ex: MP3 player, video compressor
2) Looping over memory data

– ex: vector inner product, matrix multiply, list-processing
• 1) & 2) are really very similar. 1) is often turned into 2) by buffering up input

data, and processing “offline”. Even for “online” processing, buffers are used to
smooth out temporary rate mismatches.

3) CPUs are one big loop.
– Instruction fetch ⇒ execute ⇒ Instruction fetch ⇒ execute ⇒ …
– but change their personality with each iteration.

4) Others?

Loops offer opportunity for parallelism
 by executing more than one iteration at once,
 using parallel iteration execution &/or pipelining

!12

Spring 2021 EECS151/251A Page

Pipelining Principle
• With looping usually we are less interested in the latency of one iteration

and more in the loop execution rate, or throughput.
• These can be different due to parallel iteration execution &/or pipelining.
• Pipelining review from CS61C:
 Analog to washing clothes:
 step 1: wash (20 minutes)
 step 2: dry (20 minutes)
 step 3: fold (20 minutes)
 60 minutes x 4 loads ⇒ 4 hours

 wash load1 load2 load3 load4
 dry load1 load2 load3 load4
 fold load1 load2 load3 load4
 20 min

 overlapped ⇒ 2 hours

!13

Spring 2021 EECS151/251A Page

Pipelining

 wash load1 load2 load3 load4
 dry load1 load2 load3 load4
 fold load1 load2 load3 load4

• In the limit, as we increase the number of loads, the average time per
load approaches 20 minutes (1 load completed every 20 minutes)

• The latency (time from start to end) for one load = 60 min.
• The throughput = 3 loads/hour

• The pipelined throughput ≈ # of pipe stages x un-pipelined throughput.

!14

Spring 2021 EECS151/251A Page

Hardware Pipelining Example
• Starting Design:

• Cut the CL block into pieces (stages) and separate with registers:

 T’ = 4ns + 1ns + 4ns +1ns = 10ns
 F = 1/(4ns +1ns) = 200MHz

• CL block produces a new result every 5ns instead of every 9ns.

Assume T=8ns
TFF(setup +clk→q)=1ns
F = 1/9ns = 111MHz

Assume T1 = T2 = 4ns

!15

Spring 2021 EECS151/251A Page

Limits on Pipelining
• Without FF overhead, throughput improvement α # of stages.
• After many stages are added FF overhead begins to dominate:

• Other limiters to effective pipelining:
– clock skew contributes to clock overhead
– unequal stages
– FFs dominate cost
– clock distribution power consumption
– feedback (dependencies between loop iterations) - in CPUs, we these data hazards

FF “overhead”
is the setup and
clk to Q times.

!16

Spring 2021 EECS151/251A Page

Pipelining Example
• F(x) = yi = a xi

2 + b xi + c

• x and y are assumed to be
“streams” of integers (or floats)

• Divide into 3 (nearly) equal stages.
• Insert pipeline registers at dashed

lines.

• Can we pipeline basic operators?

• Computation graph:

!17

Spring 2021 EECS151/251A Page

Example: Pipelined Ripple Adder

• Possible, but usually not done.
(arithmetic units can often be made sufficiently fast without internal pipelining)
More common to pipeline multiplication.

!18

Insert pipeline register

• Critical path cut in half
• Latency now two cycles
• Cost and energy increases by adding registers

Spring 2021 EECS151/251A Page

Pipelining Loops with Feedback

• Example 1: yi = yi-1 + xi + a

 unpipelined version:
 add1 xi+yi-1 xi+1+yi

 add2 yi yi+1

Can we “cut” the feedback and
overlap iterations?

Try putting a register after add1:
 add1 xi+yi-1 xi+1+yi

 add2 yi yi+1

“Loop carry dependency”

• Can’t overlap the
iterations because of
the dependency.

• The extra register
doesn’t help the
situation (actually
hurts).

• In general, can’t
effectively pipeline
feedback loops.

!19

t

Spring 2021 EECS151/251A Page

Pipelining Loops with Feedback

However, we can overlap the “non-
feedback” part of the iterations:

Add is associative and communitive.
Therefore we can reorder the
computation to shorten the delay
of the feedback path:

 yi = (yi-1 + xi) + a = (a + xi) + yi-1

 add1 xi+a xi+1+a xi+2+a

 add2 yi yi+1 yi+2

• Pipelining is limited to 2 stages.

“Loop carry dependency”

“Shorten” the
feedback path.

!20

Spring 2021 EECS151/251A Page

Pipelining Loops with Feedback
• Example 2:
 yi = a yi-1 + xi + b

add1 xi+b xi+1+b xi+2+b
mult ayi-1 ayi ayi+1

add2 yi yi+1 yi+2

• Reorder to shorten the feedback
loop and try putting register after
multiply:

• Just said we can’t - but let’s anyway.

• Still need 2 cycles/iteration

!21

Spring 2021 EECS151/251A Page

“C-slow” Technique
• An approach to increasing throughput in the presence of feedback: try to

fill in “holes” in the chart with another (independent) computation:

add1 xi+b xi+1+b xi+2+b
mult ayi-1 ayi ayi+1

add2 yi yi+1 yi+2
If we have a second similar computation, can interleave it with the first:

• Here the feedback depth=2 cycles (we say C=2).
• Each loop has throughput of Fclk/C. But the aggregate throughput is Fclk.
• With this technique we could pipeline even deeper, assuming we could

supply C independent streams.

F1x1 y1 = a1 y1
i-1 + x1

i + b1

F2x2 y2 = a2 y2
i-1 + x2

i + b2

Use muxes to direct each stream.
Time multiplex one piece of HW
for both stream.
 Each produces 1 result / 2 cycles.

!22

Spring 2021 EECS151/251A Page

“C-slow” Technique
• Essentially this means we go

ahead and cut feedback path:

• Interleaving makes operations in
adjacent pipeline stages
independent and allows full cycle
for each:

• C computations (in this case
C=2) can use the pipeline
simultaneously.

• Must be independent.
• Input MUX interleaves input

streams.
• Each stream runs at half the

pipeline frequency.
• Pipeline achieves full

throughput.

add1 x+b x+b x+b x+b x+b x+b
mult ay ay ay ay ay ay
add2 y y y y y y

!23

Multithreaded Processors use this.

Spring 2021 EECS151/251A Page

Beyond Pipelining - SIMD Parallelism
• An obvious way to exploit more parallelism from loops is to make multiple

instances of the loop execution data-path and run them in parallel, sharing the
some controller.

• For P instances, throughput improves by a factor of P.
• example: yi = f(xi)

• Assumes the next 4 x values available at once. The validity of this assumption
depends on the ratio of f repeat rate to input rate (or memory bandwidth).

• Cost α P. Usually, much higher than for pipelining. However, potentially
provides a high speedup. Often applied after pipelining.

• Vector processors use this technique.
• Limited, once again, by loop carry dependencies. Feedback translates to

dependencies between parallel data-paths.

f

yi

xi

f

yi+1

xi+1

f

yi+2

xi+2

f

yi+3

xi+3 Usually called SIMD
parallelism. Single
Instruction Multiple Data

!24

Spring 2021 EECS151/251A Page

SIMD Parallelism with Feedback
• Example, from earlier:
 yi = a yi-1 + xi + b

• As with pipelining, this technique is most effective in the absence of a
loop carry dependence.

• With loop carry dependence, end up with “carry ripple” situation.
• For associative operations we can employ look-ahead / parallel-prefix

optimization techniques to speed up propagation (coming soon!)
!25

