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Announcements
❑ Virtual Front Row for today 4/13: 

❑ Jeremy Ferguson 
❑ Khashayar Pirouzmand 
❑ Daniel Guzman 
❑ Keyi Hu 

❑ Please ask question or make 
comments! 

❑ Homework assignment 9 out soon - to be 
due a week after posting. 
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Outline
❑ “tricks with trees” 
❑ Adder review, subtraction, 

carry-select 
❑ Carry-lookahead 
❑ Bit-serial addition, summary
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Tricks with Trees



EE141
Demmel - CS267 Lecture 6+

A log(n) lower (time) bound to compute 
 any function of n variables

❑ Assume we can only use binary operations, each taking 
unit time 

❑ After 1 time unit, an output can only depend on two inputs 
❑ Use induction to show that after k time units, an output 

can only depend on 2k inputs 
▪ After log2 n time units, output depends on at most n inputs 

❑ A binary tree performs such a computation
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Demmel - CS267 Lecture 6+

Reductions with Trees - Review

N

log2 N

If each node (operator) is k-ary instead of binary, what is the delay?
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Trees for optimization
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 +  +  +  +  +  +  +
x0

x1 x2 x3 x4 x5 x6 x7

T = O(N) 

 +  +

 +
 +  +

 +

 +

T = O(log N) 

(( x0 + x1 ) + ( x2 + x3 )) + (( x4 + x5 ) + ( x6 + x7 ))

((((((x0 + x1 ) + x2 ) + x3 ) + x4 ) + x5 ) + x6 ) + x7 

❑ What property of “+” are we exploiting? 
❑ Other associate operators?  Boolean operations?  Division?  Min/Max? 
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Parallel Prefix, or “Scan”
❑ If “+” is an associative operator, and x0,…,xp-1 are input data then 

parallel prefix operation computes: yj = x0 + x1 + … + xj    for j=0,1,…,p-1

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

x0,  x0 + x1,  x0 + x1 + x2, …
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Adder review, 
subtraction, carry-select
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4-bit Adder Example
❑ Motivate the adder circuit design 

by hand addition: 

❑ Add a0 and b0 as follows:

• Add a1 and b1 as follows:

carry to next 
stage

r = a XOR b = a ⊕ b 
c = a AND b = ab r = a ⊕ b ⊕ ci 

co = ab + aci + bci
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Algebraic Proof of Carry Simplification
Cout = a’bc + ab’c + abc’ + abc 
        = a’bc + ab’c + abc’ + abc + abc 
        = a’bc + abc + ab’c + abc’ + abc 
        = (a’ + a)bc + ab’c + abc’ + abc 
        = (1)bc + ab’c + abc’ + abc 
        = bc + ab’c + abc’ + abc + abc 
          = bc + ab’c + abc + abc’ + abc 
          = bc + a(b’ +b)c + abc’ +abc 
        = bc + a(1)c + abc’ + abc 
        = bc + ac + ab(c’ + c) 
          = bc + ac + ab(1) 
          = bc + ac + ab
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4-bit Adder Example
❑ Gate Representation of FA-cell 

ri = ai ⊕ bi ⊕ cin 

cout = aicin + aibi + bicin

• Alternative Implementation (with 
2-input gates): 

ri = (ai ⊕ bi) ⊕ cin 

cout = cin(ai + bi) + aibi



EE141

Carry-ripple Adder Revisited
❑ Each cell: 

ri = ai ⊕ bi ⊕ cin 

cout = aicin + aibi + bicin = cin(ai + bi) + aibi 

❑ 4-bit adder: 

❑ What about subtraction?

“Full adder cell”
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Subtractor/Adder
A - B = A + (-B) 

 How do we form -B? 
  1. complement B   
  2. add 1
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Delay in Ripple Adders
❑ Ripple delay amount is a function of the data inputs: 

❑ However, we usually only consider the worst case delay on the critical path.  There is 
always at least one set of input data that exposes the worst case delay.

1  0 0  0 0  10  0

0                 0                0                 0

1  0 0  1 0  11  0

0                 0                0                 0

1  0 1  0 1  11  0

0                 0                0                 1

1  0 1  0 1  11  0

0                 0                1                 1

t0

t1

t2

t3
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Adders (cont.)
Ripple Adder 

Ripple adder is inherently slow because, in worst case 
s7 must wait for c7 which must wait for c6 … 

  T α n,  Cost α n 

How do we make it faster, perhaps with more cost?
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Carry Select Adder

T = Tripple_adder / 2 + TMUX 

COST = 1.5 * COSTripple_adder+ (n/2 + 1) * COSTMUX

17
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Carry Select Adder
❑ Extending Carry-select to multiple blocks 

❑ What is the optimal # of blocks and # of bits/block? 
▪ If blocks too small delay dominated by total mux delay 
▪ If blocks too large delay dominated by adder ripple delay

T α sqrt(N), 
Cost ≈2*ripple + muxes 18
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Carry Select Adder

❑ Compare to ripple adder delay: 
Ttotal = 2 sqrt(N) TFA – TFA, assuming TFA = TMUX 
For ripple adder Ttotal = N TFA 

“cross-over” at N=3, Carry select faster for any value of N>3. 
❑ Is sqrt(N) really the optimum? 

▪ From right to left increase size of each block to better match delays 
▪ Ex: 64-bit adder, use block sizes [12 11 10 9 8 7 7], the exact 

answer depends on the relative delay of mux and FA
19(note: one less block than sqrt(N) solution)
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Carry-lookahead and 
Parallel Prefix
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Adders with Delay α log(n)
Can carry generation be made to be a kind of “reduction operation”? 

 Lowest delay for a reduction is a balanced tree.

log2n

log2n

x6x7 x4x5 x2x3 x0x1

N

Log(N) 
Delay

• But in this case all intermediate values are required. 

• One way is to use “Parallel Prefix” to compute the 

carries. 

y0 = x0 

y1 = x0x1 

y2 = x0x1x2 

         . 

         . 

         . 

Parallel Prefix requires that the operation be associative, but simple carry generation is not!
21
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Carry Look-ahead Adders
❑ How do we arrange carry generation to be 

associative? 
❑ Reformulate basic adder stage:

carry “kill”   
  

carry “propagate”  

carry “generate”  
ci+1 = gi + pici 
si = pi ⊕ ci

a b ci   ci+1    s
  
ki = ai’ bi’ 

  
pi = ai ⊕ bi 

  
gi = ai bi
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Carry Look-ahead Adders
❑ Ripple adder using p and g signals: 

❑ So far, no advantage over ripple adder:   T α N

p0
g0

s0 = p0 ⊕ c0 
c1 = g0 + p0c0

s0
a0
b0

p1
g1

s0 = p1 ⊕ c1 
c2 = g1 + p1c1

s1
a1
b1

p2
g2

s2 = p2 ⊕ c2 
c3 = g2 + p2c2

s2
a2
b2

p3
g3

s3 = p3 ⊕ c3 
c4 = g3 + p3c3

s3
a3
b3

c0

c4

pi = ai ⊕ bi 
gi = ai bi
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Carry Look-ahead Adders
❑ “Group” propagate and generate signals: 

❑ P true if the group as a whole propagates a carry to cout 

❑ G true if the group as a whole generates a carry 

❑ Group P and G can be generated hierarchically.

pi
gi

pi+1
gi+1

pi+k
gi+k

P = pi pi+1 … pi+k 
G = gi+k + pi+kgi+k-1 + … + (pi+1pi+2 … pi+k)gi

cin

cout

cout = G + Pcin

24
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Carry Look-ahead Adders

a0
b0
a1
b1
a2
b2

a

a3
b3
a4
b4
a5
b5

b

c3 = Ga + Pac0

Pa

Ga

Pb

Gb

a6
b6
a7
b7
a8
b8

c

c6 = Gb + Pbc3

Pc

Gc

P = PaPbPc

G = Gc + PcGb + PbPcGa

c9 = G + Pc0

c0

9-bit Example of hierarchically 
generated  P and G signals:
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c0

a0b0
s0

a1b1
s1

c1

a2
b2

s2

a3b3
s3

c3

c2

c0

c0

a4b4
s4

a5b5
s5

c5

a6b6
s6

a7b7

c7

c6

c0

c4

c0

c8

p,g

P,G

P,G

cin

cout

P,G
Pa,Ga

Pb,Gb

P = PaPb 
G = Gb + GaPb 

Cout = G + cinP

aibi
si

p,g

ci

ci+1

p = a ⊕ b 
g = ab 

s = p ⊕ ci 

ci+1 = g + cip

8-bit Carry Look-
ahead Adder
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p0
g0s0

p1
g1s1

c1= g0+p0c0

p1
g2s2

c2

p3
g3s3

c3= g2+p2c2

p4
g4s4

p5
g5s5

p6
g6s6

c6

p7
g7s7

c0

c5= g4+p4c4

c7= g6+p6c6

c4

c2=G8+P8c0

P8=p0p1

G8=g1+p1g0

P9=p2p3

c6=Ga+Pac4

Pa=p4p5

Ga=g5+p5g4

Pb=p6p7

G9=g3+p3g2

Gb=g7+p7g6

c4=Gc+Pcc0

Pc=P8P9

Gc=G9+P9G8

Pd=PaPb

Gd=Gb+PbGa

c8=Ge+Pec0

Pe=PcPd

Ge=Gd+PdGc

c0

c4

c8

8-bit Carry Look-ahead 
Adder with 2-input gates.
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Parallel-Prefix Carry Look-ahead Adders
❑ Ground truth specification of all carries directly (no grouping): 

c0 =  0 
c1 = g0 + p0c0 = g0  
c2 = g1 + p1c1 = g1 + p1g0 
c3 = g2 + p2c2 = g2 + p2g1 + p1p2g0 
c4 = g3 + p3c3 = g3 + p3g2 + p3p2g1 + p4p3p2g0 

   . 
   . 
   .

Binary (G, P) 
associative operator 

28Use binary (G,P) operator to form parallel prefix tree

ci+1 = gi + pici

Can be used to form all carries!
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Parallel Prefix Adder Example

G = g1 + g0 p1 
P = p1p0

g1 p1g2 p2g3 p3

G = g2 + g1 p2 
P = p2p1

G = g3 + g2 p3 
P = p3p2

g0 p0

G = g2 + g1 p2 + g0p2p1 

      = c3
G = g3 + g2 p3 +(g1 + g0p1)p3p2 

      = g3 + g2p3 + g1p3p2 + g0p3p2p1 

      = c4

 c2

 c1

si = ai ⊕ bi ⊕ ci  = pi ⊕ ci 
29
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Other Parallel Prefix Adder Architectures

Ladner-Fischer adder: minimum logic 
depth, large fan-out requirement up to n/2 

Kogge-Stone adder: minimum logic depth, and 
full binary tree with minimum fan-out, 
resulting in a fast adder but with a large area 

Brent-Kung adder: minimum area, but high 
logic depth

Han-Carlson adder: hybrid design 
combining stages from the Brent-Kung and 
Kogge-Stone adder 30
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Carry look-ahead Wrap-up
❑ Adder delay Ο(logN).   
❑ Cost?  
❑ Can be applied with other techniques.  Group P & G 

signals can be generated for sub-adders, but another 
carry propagation technique (for instance ripple) used 
within the group. 
▪ For instance on FPGA.  Ripple carry up to 32 bits is fast, CLA 

used to extend to large adders.  CLA tree quickly generates 
carry-in for upper blocks.

31
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Bit-serial Addition, Adder 
summary
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Bit-serial Adder

❑ Addition of 2 n-bit numbers: 
▪ takes n clock cycles, 
▪ uses 1 FF, 1 FA cell, plus registers 
▪ the bit streams may come from or go to other circuits, therefore the 

registers might not be needed.

• A, B, and R held in shift-registers.  
Shift right once per clock cycle. 

• Reset is asserted by controller.

33
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Adders on FPGAs

• Dedicated carry logic 
provides fast 
arithmetic carry 
capability for high-
speed arithmetic 
functions. 

• On Virtex-5 
• Cin to Cout (per 

bit) delay = 40ps, 
versus 900ps for 
F to X delay.  

• 64-bit add delay 
= 2.5ns.

34
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Adder Final Words 

❑ Dynamic energy per addition for all of these is O(n). 
❑ “O” notation hides the constants.  Watch out for this! 
❑ The “real” cost of the carry-select is at least 2X the “real” cost of 

the ripple.   “Real” cost of the CLA is probably at least 2X the 
“real” cost of the carry-select.  

❑ The actual multiplicative constants depend on the 
implementation details and technology. 

❑ FPGA and ASIC synthesis tools will try to choose the best 
adder architecture automatically - assuming you specify 
addition using the “+” operator, as in “assign A = B + C”

Type Cost Delay

Ripple O(N) O(N)

Carry-select O(N) O(sqrt(N))

Carry-lookahead O(N) O(log(N))

Bit-serial O(1) O(N)
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