

EECS151/251A Fall 2021 Digital Design and Integrated Circuits

Instructors:
John Wawrzynek

Lecture 22: Adders

Announcements

- Virtual Front Row for today 4/13:
- Jeremy Ferguson
- Khashayar Pirouzmand
- Daniel Guzman
- Keyi Hu
- Please ask question or make comments!
- Homework assignment 9 out soon - to be due a week after posting.

Outline

- "tricks with trees"
- Adder review, subtraction, carry-select
- Carry-lookahead
- Bit-serial addition, summary

Tricks with Trees

A log(n) lower (time) bound to compute any function of n variables

\square Assume we can only use binary operations, each taking unit time
After 1 time unit, an output can only depend on two inputs

- Use induction to show that after k time units, an output can only depend on 2^{k} inputs
- After $\log _{2} n$ time units, output depends on at most n inputs
\square A binary tree performs such a computation

Demmel - CS267 Lecture 6+

Reductions with Trees - Review

If each node (operator) is k-ary instead of binary, what is the delay?

Trees for optimization

$$
\left(\left(x_{0}+x_{1}\right)+\left(x_{2}+x_{3}\right)\right)+\left(\left(x_{4}+x_{5}\right)+\left(x_{6}+x_{7}\right)\right)
$$

- What property of " + " are we exploiting?
- Other associate operators? Boolean operations? Division? Min/Max?

Parallel Prefix, or "Scan"

- If " + " is an associative operator, and x_{0}, \ldots, x_{p-1} are input data then parallel prefix operation computes: $\boldsymbol{y}_{j}=x_{0}+x_{1}+\ldots+x_{j} \quad$ for $j=0,1, \ldots, p-1$ $x_{0}, x_{0}+x_{1}, \quad x_{0}+x_{1}+x_{2}, \ldots$

Adder review,
subtraction, carry-select

4-bit Adder Example

- Motivate the adder circuit design by hand addition:

$$
\begin{aligned}
& \text { a3 a2 a1 a0 } \\
& \text { + b3 be b1:b0 } \\
& \text { c r3 rer1:ra }
\end{aligned}
$$

- Add a0 and b0 as follows:

| a | b | r | c | carry to next |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | stage |
| 0 | 1 | 1 | 0 | |
| 1 | 0 | 1 | 0 | |
| 1 | 1 | 0 | 1 | |
| $r=a$ | XOR $b=a \oplus b$ | | | |
| $c=a$ | AND $b=a b$ | | | |

- Add a1 and b1 as follows:

$c i$	a	\square	Γ	$c \square$
\square	\square	\square	\square	\square
\square	\square	1	1	\square
\square	1	\square	1	\square
1	1	1	\square	\square
1	\square	1	\square	1
1	1	\square	\square	1
1	1	1	1	1
$r=a \oplus b \oplus c_{i}$				
$c o=a b+a c_{i}+b c_{i}$				

Algebraic Proof of Carry Simplification

$$
\begin{aligned}
\text { Cout } & =a^{\prime} b c+a b b^{\prime} c+a b c^{\prime}+a b c \\
& =a^{\prime} b c+a b \prime c+a b c^{\prime}+a b c+a b c \\
& =a a^{\prime} b c+a b c+a b^{\prime} c+a b c^{\prime}+a b c \\
& =\left[a^{\prime}+a\right] b c+a b^{\prime} c+a b c^{\prime}+a b c \\
& =[1] b c+a b b^{\prime} c+a b c^{\prime}+a b c \\
& =b c+a b b^{\prime} c+a b c^{\prime}+a b c+a b c \\
& =b c+a b b^{\prime} c+a b c+a b c^{\prime}+a b c \\
& =b c+a\left[b^{\prime}+b\right] c+a b c^{\prime}+a b c \\
& =b c+a[1] c+a b c^{\prime}+a b c \\
& =b c+a c+a b\left[c^{\prime}+c\right] \\
& =b c+a c+a b[1] \\
& =b c+a c+a b
\end{aligned}
$$

$$
\text { cout }=a b+b c+a c
$$

4-bit Adder Example

- Gate Representation of FA-cell

$$
\begin{aligned}
& r_{i}=a_{i} \oplus b_{i} \oplus c_{\text {in }} \\
& c_{\text {out }}=a_{i} c_{\text {in }}+a_{i} b_{i}+b_{i} c_{\text {in }}
\end{aligned}
$$

- Alternative Implementation (with 2-input gates):

$$
\begin{aligned}
& r_{i}=\left[a_{i} \oplus b_{i}\right] \oplus c_{\text {in }} \\
& c_{\text {out }}=c_{\text {in }}\left[a_{i}+b_{i}\right]+a_{i} b_{i}
\end{aligned}
$$

Carry-ripple Adder Revisited

- Each cell:

$$
\begin{aligned}
& r_{i}=a_{i} \oplus b_{i} \oplus c_{i n} \\
& c_{o u t}=a_{i} c_{i n}+a_{i} b_{i}+b_{i} c_{i n}=c_{i n}\left(a_{i}+b_{i}\right)+a_{i} b_{i}
\end{aligned}
$$

"Full adder cell"

- 4-bit adder:

- What about subtraction?

Subtractor/Adder

$A-B=A+(-B)$
How do we form $-B$?

1. complement B
2. add 1

Delay in Ripple Adders

- Ripple delay amount is a function of the data inputs:

- However, we usually only consider the worst case delay on the critical path. There is always at least one set of input data that exposes the worst case delay.

Adders (cont.)

Ripple Adder

Ripple adder is inherently slow because, in worst case s7 must wait for $c 7$ which must wait for c6 ...

$$
T \propto n, \operatorname{Cost} \alpha n
$$

How do we make it faster, perhaps with more cost?

Carry Select Adder

$$
T=T_{\text {ripple_adder }} / 2+T_{M U X}
$$

$\operatorname{COST}=1.5{ }^{*} \operatorname{COST}_{\text {ripple_adder }}+(n / 2+1) * \operatorname{COST}_{\text {MUX }}$

Carry Select Adder

- Extending Carry-select to multiple blocks

- What is the optimal \# of blocks and \# of bits/block?
- If blocks too small delay dominated by total mux delay
- If blocks too large delay dominated by adder ripple delay

$$
\begin{aligned}
& T \alpha \text { sqrt(N), } \\
& \text { Cost } \approx 2^{*} \text { ripple + muxes }
\end{aligned}
$$

Carry Select Adder

- Compare to ripple adder delay:
$\mathrm{T}_{\text {total }}=2 \operatorname{sqrt}(\mathrm{~N}) \mathrm{T}_{\mathrm{FA}}-\mathrm{T}_{\mathrm{FA}}$, assuming $\mathrm{T}_{\mathrm{FA}}=\mathrm{T}_{\mathrm{MUX}}$
For ripple adder $T_{\text {total }}=N T_{F A}$
"cross-over" at $\mathrm{N}=3$, Carry select faster for any value of $\mathrm{N}>3$.
- Is sqrt(N) really the optimum?
- From right to left increase size of each block to better match delays
- Ex: 64-bit adder, use block sizes [12 1110987 7], the exact answer depends on the relative delay of mux and FA

Carry-lookahead and Parallel Prefix

Adders with Delay a $\log (n)$

Can carry generation be made to be a kind of "reduction operation"?
Lowest delay for a reduction is a balanced tree.

- But in this case all intermediate values are required.
- One way is to use "Parallel Prefix" to compute the carries.

$$
\begin{aligned}
& y_{0}=x_{0} \\
& y_{1}=x_{0} x_{1} \\
& y_{2}=x_{0} x_{1} x_{2}
\end{aligned}
$$

Parallel Prefix requires that the operation be associative, but simple carry generation is not!

Carry Look-ahead Adders

- How do we arrange carry generation to be associative?
- Reformulate basic adder stage:

a	b	c_{i}	c_{i+1}	s	
0	0	0	0	0	carry "kill"
0	0	1	0	1	$k_{i}=a_{i}^{\prime} b_{i}{ }^{\prime}$
0	1	0	0	1	
0	1	1	1	0	carry "propagate"
1	0	0	0	1	$p_{i}=a_{i} \oplus b_{i}$
1	0	1	0		
1	1	1	1	0	carry "generate"
1	1	1	1	1	$g_{i}=a_{i} b_{i}$

Carry Look-ahead Adders

- Ripple adder using p and g signals:

$$
\begin{aligned}
& p_{i}=a_{i} \oplus b_{i} \\
& g_{i}=a_{i} b_{i}
\end{aligned}
$$

- So far, no advantage over ripple adder: T $\alpha \mathrm{N}$

Carry Look-ahead Adders

- "Group" propagate and generate signals:

$\xrightarrow{\longrightarrow} \mathrm{p}_{i} g_{i}$	
$\begin{aligned} & \longrightarrow p_{i+1} \\ & \longrightarrow \end{aligned} g_{i+1}$	$P=p_{i} p_{i+1} \ldots p_{i+k}$
	$G=g_{i+k}+p_{i+k} g_{i+k-1}+\ldots+\left(p_{i+1} p_{i+2} \ldots p_{i+k}\right) g_{i}$
$\xrightarrow{\longrightarrow} \mathrm{p}_{\text {¢ }} g_{i+k}$	$c_{\text {out }}$

- P true if the group as a whole propagates a carry to $c_{\text {out }}$
- G true if the group as a whole generates a carry

$$
c_{\text {out }}=G+P C_{i n}
$$

- Group P and G can be generated hierarchically.

Carry Look-ahead Adders

Parallel-Prefix Carry Look-ahead Adders

- Ground truth specification of all carries directly (no grouping):

$$
\begin{aligned}
& c_{0}=0 \\
& c_{1}=g_{0}+p_{0} c_{0}=g_{0} \\
& c_{2}=g_{1}+p_{1} c_{1}=g_{1}+p_{1} g_{0} \\
& c_{3}=g_{2}+p_{2} c_{2}=g_{2}+p_{2} g_{1}+p_{1} p_{2} g_{0} \\
& c_{4}=g_{3}+p_{3} c_{3}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{4} p_{3} p_{2} g_{0}
\end{aligned}
$$

$$
c_{i+1}=g_{i}+p_{i} c_{i}
$$

Binary (G, P)
associative operator
Can be used to form all carries!
(G, P)
Use binary (G,P) operator to form parallel prefix tree
${ }^{\left.\left(\sigma^{T}, p^{p}\right)^{(G},{ }^{p}{ }^{p}\right)}$ Parallel Prefix Adder Example

$$
\begin{aligned}
G & =g_{3}+g_{2} p_{3}+\left(g_{1}+g_{0} p_{1}\right) p_{3} p_{2} \\
& =g_{3}+g_{2} p_{3}+g_{1} p_{3} p_{2}+g_{0} p_{3} p_{2} p_{1} \\
& =c_{4}
\end{aligned}
$$

$$
s_{i}=a_{i} \oplus b_{i} \oplus c_{i}=p_{i} \oplus c_{i}
$$

Other Parallel Prefix Adder Architectures

$\begin{array}{lllllllllllllllll}\text { Inputs } & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

Kogge-Stone adder: minimum logic depth, antauts full binary tree with minimum fan-out, resulting in a fast adder but with a large area

Ladner-Fischer adder: minimum logic depth, large fan-out requirement up to $n / 2$
$\begin{array}{llllllllllllllllll}\text { Inputs } & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

Inputs

Outputs

Brent-Kung adder: minimum area, but high logic depth

Han-Carlson adder: hybrid design combining stages from the Brent-Kung and Kogge-Stone adder

Carry look-ahead Wrap-up

- Adder delay $\mathrm{O}(\log \mathrm{N})$.
- Cost?
- Can be applied with other techniques. Group P \& G signals can be generated for sub-adders, but another carry propagation technique (for instance ripple) used within the group.
- For instance on FPGA. Ripple carry up to 32 bits is fast, CLA used to extend to large adders. CLA tree quickly generates carry-in for upper blocks.

Bit-serial Addition, Adder summary

Bit-serial Adder

n-bit shift registers

- A, B, and R held in shift-registers. Shift right once per clock cycle.
- Reset is asserted by controller.

- Addition of 2 n -bit numbers:
- takes n clock cycles,
- uses 1 FF, 1 FA cell, plus registers
- the bit streams may come from or go to other circuits, therefore the registers might not be needed.

Adders on FPGAs

- Dedicated carry logic provides fast arithmetic carry capability for highspeed arithmetic functions.
- On Virtex-5
- Cin to Cout (per bit) delay $=40 \mathrm{ps}$, versus 900ps for F to X delay.
- 64-bit add delay $=2.5 \mathrm{~ns}$.

Adder Final Words

Type	Cost	Delay
Ripple	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N}]$
Carry-select	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}[$ sqrt $[\mathrm{N}])$
Carry-lookahead	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\log [\mathrm{N}])$
Bit-serial	$\mathrm{O}[1]$	$\mathrm{O}[\mathrm{N}]$

- Dynamic energy per addition for all of these is $\mathrm{O}(\mathrm{n})$.
- "O" notation hides the constants. Watch out for this!
- The "real" cost of the carry-select is at least 2 X the "real" cost of the ripple. "Real" cost of the CLA is probably at least 2 X the "real" cost of the carry-select.
- The actual multiplicative constants depend on the implementation details and technology.
- FPGA and ASIC synthesis tools will try to choose the best adder architecture automatically - assuming you specify addition using the " + " operator, as in "assign $\mathrm{A}=\mathrm{B}+\mathrm{C}$ "

