EECS151/251A
Fall 2021

Digital Design and
Integrated Circuits

; ~ Instructors:
John Wawrzynek

Announcements

4 Virtual Front Row for today 4/13:
d Jeremy Ferguson
Q Khashayar Pirouzmand
QA Daniel Guzman
4 Keyi Hu

d Please ask question or make
comments!

d Homework assignment 9 out soon - to be
due a week after posting.

Outline

Q “tricks with trees”

a Adder review, subtraction,
carry-select

d Carry-lookahead
Q Bit-serial addition, summary

A log(n) lower (time) bound to compute
any function of n variables

d Assume we can only use binary operations, each taking
unit time

a After 1 time unit, an output can only depend on two inputs

A Use induction to show that after k time units, an output
can only depend on 2k inputs
» After log, n time units, output depends on at most n inputs

d A binary tree performs such a computation

Demmel - CS267 Lecture 6+

Reductions with Trees - Review

al+al+a2+a3+ad+ad+ao+a?
al+al+a2+a3 ad+ad+ab+a?
log, N
al+3 22+a3 ad+a3 a6+a7
al al a2 al o a3 ab a7
N

If each node (operator) is k-ary instead of binary, what is the delay?

&

Trees for optimization

X1 X2 X3 X4 X5

Xg X7
I I
GGGGGGG r=0om

((((((Xg +X1) + X5) + X3) +X4) +X5) + Xg) + X
N\, E)/ \%@E}/

|

((Xo*+Xg) +(Xo+X3)) *((Xg+X5) +(Xg+X7))

Q What property of “+” are we exploiting?

T =0O(log N)

Q Other associate operators? Boolean operations? Division? Min/Max?
7

Parallel Prefix, or “Scan”

a If "+" is an associative operator, and xy,...,X,,_, are input data then
parallel prefix operation computes: Y;=Xo* X, + ... +x; forj=0,1,...,p-1

Xo X1 Xz X3 X4 X5 X6 X7 Xg Xg X109 X11X12X13 X14X15

XB\X@ (XB\(X@ X@\(

/\/@\/
N

)

Tedd | || [T
N T

4-bit Adder Example

Q Motivate the adder circuit design
by hand addition:

- -

a3 az a1EaDE
+ b3 bz b1, b0

cr3rzrliro!

— -

Q2 Add a0 and b0 as follows:

& b|rcC - carytonext
oo(oa0o stage
O1(10

1 010

1 1[0 1

r=aXORb=a®b
c=aAND b =ab

a3 azi al; a0
+ b3 bz.b1: b0
c r3 reiriro

e Addal and b1 as follows:

ci a b I CO
0 0 0| 0 O
o 0 1 1 0O
o 1 0 1 0O
o 1 1 o 1
1 0 0 1 0O
1 0 1 o 1
1 1. 00 1
1 1 1 1 1
r=a®boc;

co = ab + ac; + bc;

Algebraic Proof of Carry Simplification

Cout = a’bc + ab’c + abc’ + abc
=a'bc + ab’c + abc’ + abc + abc
=a'bc + abc + ab’c + abc’ + abc
= (@’ + a)bc + ab’c + abc’ + abc

=(1)bc + ab’c + abc’ + abc c aboo 01 11 10
= bc + ab’c + abc’ + abc + abc 0 0/0|}0
= bc + ab’c + abc + abc’ + abc 10(@07T
= bc + a(b’ +bjc + abc’ +abc cout =ab +bc+ac

=bc + a(1)c + abc’ + abc
=bc + ac + ab[c’ + c)
=pbc + ac + ab(1]
=bc+ac+ab

4-bit Adder Example

Q (Gate Representation of FA-cell

* Alternative Implementation (with
n=a®b ®c,

2-input gates):
Cout = AiCip + a@b; + bic;, r=(a®b)®c,

Cout = Cin(8; + b)) + 8b,

Cin —¢ D_ Cin |
a)—
:>— Cout Cout
[\

|

a—
Cin J

Carry-ripple Adder Revisited l T l

4 Each cell: FA
r=a®b ®c,
Cout = @G, T A0 + bic, = ¢, (3, + b)) +ab, l l
cO I
“Full adder cell”
Q 4-bit adder:
a3 b3 az bz al b1 al b0
W Wy ey M
FA FA FA FA
o |
r3 re r1 ro

a What about subtraction?

Subtractor/Adder
A-B=A+ (-B)

How do we form -B?

1. complement B
2.add 1

Lian-1
Yl

| Sio

sn-1 ST

Delay in Ripple Adders

d Ripple delay amount is a function of the data inputs:

10 00 00 01 10 10 10 11
a3 b3 az b? al bl a0 ba a3 b3 az he al bi al ho
FA FA FA FA FA e FA FA
R B e e e i el
r3 r2 1 0 e . t2 r ro
tO 170 170 11
a3 b3 az be al b1 al bo
v ww am o e ey ey e
H¢— H+— H¢— H4—° FA FA FA FA
FA FA FA FA ¢] 5 5 5 l
Com | l L]] L l 0 r3 0 r2 ! r ! 0
0 0 0 0 f
r3 re r ro 3
t e
[]

A However, we usually only consider the worst case delay on the critical path. There is

always at least one set of input data that exposes the worst case delay.
15

Adders (cont.)

Ripple Adder
b0 a0

N00=E0000

s7 %6 ML
Ripple adder is inherently slow because, in worst case

s/ must wait for c7 which must wait for cé6 ...

Ton, Costan

How do we make it faster, perhaps with more cost?

Carry Select Adder

b’aif b6a6 DbdSad bdad Db3a3 Db2a2 Dblal b0al

]) o o o e

S 8 U e TTLTT LT

pthddidiiey S
FA

s7 % 5 4

r=T /2+ T ux

ripple _adder

COST =1.5"COST e addert (/2 + 1) * COST

rip

17

Carry Select Adder

a Extending Carry-select to multiple blocks

b15b12 a15a12 b11-b8 al1-a8 b7-b4 a7-a4
! P I 0 e
1 4bit Adder | 1 | 4-bit Adder |1 — 4-bit Adder f i i

Q What is the optimal # of blocks and # of bits/block?

» If blocks too small delay dominated by total mux delay
» If blocks too large delay dominated by adder ripple delay

: T a sqrt(N),
v/ N stages of N bits Cost ~2*ripple + muxes h

Carry Select Adder

b15-b12 a15-a12 b11-b8 al1-a8 b7-b4 a7-a4

f It I 950 20

| abitAdder | | avitAdder | | svtader ii

|:|1 F | I___|1 F T L |:|1 F | . .
oout— o0 0 o0 0 ot — 4bitAdder }—can
Adder " Adder] Adder 1
— ey — | m—— p— | S——
|1o|—1|!_(’£l|1h<])|—1|10|—< |10|—1F1|(_(%|'1_—(|ﬂ—1|10|—< |10)—1|l—<’)|J—l[1—(l)|-1|10|—<

Q Compare to ripple adder delay:
Tiotar = 2 SAM(N) Tea— T @ssuming Tea = Tyyux
For ripple adder T, .., = N T,
“cross-over”’ at N=3, Carry select faster for any value of N>3.
a Is sqrt(N) really the optimum?
= From right to left increase size of each block to better match delays

= EX: 64-bit adder, use block sizes [12 11 10 9 8 7 7], the exact
answer depends on the relative delay of mux and FA

note: one | lock than sqrt(N) solution b

total

Adders with Delay a log(n)

Can carry generation be made to be a kind of “reduction operation”?

< »
< >

X3 X2 X1 XO

e Butin this case all intermediate values are required.
e One way is to use “Parallel Prefix” to compute the
. Log(N
carries. oy

Lowest delay for a reduction is a balanced tree.

log,n
Yo = %o
. | 10920 Y1 = XoXq
d [j— Yo = XpX4X>

Y7 Y6 Y5 Yq Y3 Yo Yq Yo

Parallel Prefix requires that the operation be associative, but simple carry generation is g?t!

Carry Look-ahead Adders

Q How do we arrange carry generation to be
associative?

A Reformulate basic adder stage:

abc;c,, S

000 O [0 carry “kill”

001 0 |1 K=ab

010 O |1

011 1 |0 carry ‘propagate”

100 0 |1 p,=a®b,

8018 comy gonror o155 P
carry “generate -n _

1110 1 11 g=ab, Si=Pi®6

22

Carry Look-ahead Adders

d Ripple adder using p and g signals: p,=a; ®b,
Co 9/ = a, bi
!
aO » —»po —> SO = po @ CO —>80
bO > —>go — C1 = gO + pOCO
a; — P sp=p;®Cy | S,
b1 » .07 — C2 = g1 + p1C1
a, __| P2 _f S; =P, D | S,
b2 N —>92 —> C3 = gZ + pZCZ
as; __| Pz | s, =p, @ cy | S5
b3 » 93 —, C, =303+ pP3Cs

v

Cy

d So far, no advantage over ripple adder: T a N
23

Carry Look-ahead Adders

Q “Group” propagate and generate signals:

— P h Cin

- J, |

—>Pj+1
o s > P=p;Pjs --- Pisk
() G = gi+k + pi+kgi+k-1 ...+ (pi+1pi+2 pi+k)gi
L

> Pj I

— ik J Cout

a P true if the group as a whole propagates a carry to c_;

a G true if the group as a whole generates a carry
Cout= G+ PCin

a Group P and G can be generated hierarchically.

Carry Look-ahead Adders

0

9-bit Example of hierarchically
a generated P and G signals:

5] ¢ ____P=PP,P,

____G=G,+PG,+P,PG,

b, | [~CG C9=G+Pc

A 4

Lrs

PG

i

A 4

A 4

L

10

A 4

a;

b.

I
S;

- 7

PG

a —a

Pb7 Gb

—D

C.

i
|

1 :_Aﬁﬂ

v

Civ1

p=a®b
g=ab
S=pDC
Ci+1 = g + Cip

8-bit Carry Look-
ahead Adder

P=P,P,
G=G,+G,P,
Cout =G+ Cin'D

26

[, S,

g C1= 9pTPuCo

F———C5=941P4Cy

| Co
»Pg=poP

» Gg=9,*tP+9,

Pgc

»Po=p,p3

»Go=05*P30,

| &
- Pa=P4Ps

» G,=051P59,

Ce=G,+

——C;= 061PeCs

— M7

PaC4

» Ppy=pgP;

> Gp=g;+P;9

| Cs

v

8-bit Carry Look-ahead
Adder with 2-input gates.

L P_=P,P,
L. G,=G,+P,G,

<

C4=GC+PCCO

27

Parallel-Prefix Carry Look-ahead Adders

Q Ground truth specification of all carries directly (no grouping):
c,= 0
C1 =90 PoCo = 9o
C;=9;*+PC;=9; %P9
C3 =0y ¥ P2y =9y ¥ P94 + P4P,9,

C, =93+ P3C3 =093+ P39, + P3P,94 T P4P3PLY,

Civ1 =9, T PIC

(G”, P”) (G’ , P!)

Binary (G, P)

associative operator

G=G"+G'P” Can be used to form all carries!
P=P'P”

(G, P)

Use binai iGlPi Oﬁerator fo form ﬁarallel ﬁreﬁx free s

w7 Parallel Prefix Adder Example

g3 P3 g, Py g: Pq 9o Po
G=G"+G’ P” - - |
p=p'p” a a n
@GP (((
1G=9g;+9,p;s T1G=9,*+9;p, T(G=9;+3g,pP,

P = psp, P =p,yp, ﬁy/
C
2

A

G=9,+3g,p,+goybsP,
G=g;+9,P;3+(9;+goP1)PsP2
=03t gP3 T gPsP, T GoP3PP4 S;=a;,®b,®c; =pdc
=C 29

Other Parallel Prefix Adder Architectures

lnputs 15 14 13 12 1110 9 B 7 6 5 4 3 2 1 0 Inputs 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
) O
/1 I
: Stage 1 :
I
I
1 Stage2 o I
) 1o [
1o : : D O :
| Stage3 N Lo
| [[| | |7 N B
| [1 I I I) O O QO | | |
| 11 | | | | I B I I | | | | |
| | veereet4RRRRERR
W et dIEEEEE Singe
o g
Oupus 5 7 7 7 7 7 7T 7 0 0 0 001 Oututs......'.!!!!!!!!
Kogge-Stone adder: minimum logic depth, an Ladner-Fischer adder: minimum logic
full binary tree with minimum fan-out, depth, large fan-out requirement up to n/2
resulting in a fast adder but with a large area
2 1 0

Inputs 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
Stage 1

Stage 1
Stage 2

Stage 2

Stage 3 Stage 3

Stage 4 Stage 4

| | |
Stage 5 I | |
: : : Stage 5

Outputs Stage Gurputs

— , Han-Carlson adder: hybrid design
Brent-Kung adder: minimum area, but high B N

logic depth ii _i i i 30

Carry look-ahead Wrap-up
2 Adder delay O(logN).
4 Cost?

Q Can be applied with other techniques. Group P & G
signals can be generated for sub-adders, but another
carry propagation technique (for instance ripple) used
within the group.

= Forinstance on FPGA. Ripple carry up to 32 bits is fast, CLA
used to extend to large adders. CLA tree quickly generates
carry-in for upper blocks.

Bit-serial Adder

n-bit shift registers A, B, and R held in shift-registers.
A Shift right once per clock cycle.
 Reset is asserted by controller.
B

reset ~| FF< FA o
n-bit shift register
— R

C

2 Addition of 2 n-bit numbers:
= takes n clock cycles,
= uses 1 FF, 1 FA cell, plus registers

= the bit streams may come from or go to other circuits, therefore the
registers might not be needed.

Adders on FPGAs

Resat Type
oSync
© Agsync
o omux
- Dedicated carry logic =51 w5 oo
provides fast =g . o cam af—O0a
arithmetic carry o RS
capability for high- -
. . O Cvux
speed arithmetic SBYe g, E——.
functions. e os | S ol
OINTO
- On Virtex-5 o Hoc 5550w,
.]

- Cin to Cout (per S omx
bit) delay = 40ps, Egg% . oo
versus 900ps for =5x * o SHm af—Oe0
F to X delay. To [Hex 55008,

.]
¢ 64'b|t add delay £ AMUX
= 2.5ns = T
. . oux = =T
= & | S ol O
e un

Adder Final Words

Type Cost Delay
Ripple O[N] O(N])
Carry-select O[N] O(sgrt{N]]
Carry-lookahead |O[N] O(log(N])
Bit-serial O(1) O[N]

A Dynamic energy per addition for all of these is O(n).
“O” notation hides the constants. Watch out for this!

A The “real” cost of the carry-select is at least 2X the “real” cost of
the ripple. “Real” cost of the CLA is probably at least 2X the
“real” cost of the carry-select.

Q The actual multiplicative constants depend on the
implementation details and technology.

QA FPGA and ASIC synthesis tools will try to choose the best
adder architecture automatically - assuming you specify
addition using the “+” operator, as in “assign A=B + C” .

(I

