
EE141

EECS151/251A
Fall	2021	
Digital	Design	and	
Integrated	Circuits
Instructors:		
John	Wawrzynek

Lecture 22: Adders

EE141

Announcements
❑ Virtual Front Row for today 4/13:

❑ Jeremy Ferguson
❑ Khashayar Pirouzmand
❑ Daniel Guzman
❑ Keyi Hu

❑ Please ask question or make
comments!

❑ Homework assignment 9 out soon - to be
due a week after posting.

2

EE141

Outline
❑ “tricks with trees”
❑ Adder review, subtraction,

carry-select
❑ Carry-lookahead
❑ Bit-serial addition, summary

3

EE141

Tricks with Trees

EE141
Demmel - CS267 Lecture 6+

A log(n) lower (time) bound to compute
 any function of n variables

❑ Assume we can only use binary operations, each taking
unit time

❑ After 1 time unit, an output can only depend on two inputs
❑ Use induction to show that after k time units, an output

can only depend on 2k inputs
▪ After log2 n time units, output depends on at most n inputs

❑ A binary tree performs such a computation

EE141
Demmel - CS267 Lecture 6+

Reductions with Trees - Review

N

log2 N

If each node (operator) is k-ary instead of binary, what is the delay?

EE141

Trees for optimization

7

 + + + + + + +
x0

x1 x2 x3 x4 x5 x6 x7

T = O(N)

 + +

 +
 + +

 +

 +

T = O(log N)

((x0 + x1) + (x2 + x3)) + ((x4 + x5) + (x6 + x7))

((((((x0 + x1) + x2) + x3) + x4) + x5) + x6) + x7

❑ What property of “+” are we exploiting?
❑ Other associate operators? Boolean operations? Division? Min/Max?

EE141

Parallel Prefix, or “Scan”
❑ If “+” is an associative operator, and x0,…,xp-1 are input data then

parallel prefix operation computes: yj = x0 + x1 + … + xj for j=0,1,…,p-1

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

x0, x0 + x1, x0 + x1 + x2, …

EE141

Adder review,
subtraction, carry-select

EE141
10

4-bit Adder Example
❑ Motivate the adder circuit design

by hand addition:

❑ Add a0 and b0 as follows:

• Add a1 and b1 as follows:

carry to next
stage

r = a XOR b = a ⊕ b
c = a AND b = ab r = a ⊕ b ⊕ ci

co = ab + aci + bci

EE141
11

Algebraic Proof of Carry Simplification
Cout = a’bc + ab’c + abc’ + abc
 = a’bc + ab’c + abc’ + abc + abc
 = a’bc + abc + ab’c + abc’ + abc
 = (a’ + a)bc + ab’c + abc’ + abc
 = (1)bc + ab’c + abc’ + abc
 = bc + ab’c + abc’ + abc + abc
 = bc + ab’c + abc + abc’ + abc
 = bc + a(b’ +b)c + abc’ +abc
 = bc + a(1)c + abc’ + abc
 = bc + ac + ab(c’ + c)
 = bc + ac + ab(1)
 = bc + ac + ab

EE141
12

4-bit Adder Example
❑ Gate Representation of FA-cell

ri = ai ⊕ bi ⊕ cin

cout = aicin + aibi + bicin

• Alternative Implementation (with
2-input gates):

ri = (ai ⊕ bi) ⊕ cin

cout = cin(ai + bi) + aibi

EE141

Carry-ripple Adder Revisited
❑ Each cell:

ri = ai ⊕ bi ⊕ cin

cout = aicin + aibi + bicin = cin(ai + bi) + aibi

❑ 4-bit adder:

❑ What about subtraction?

“Full adder cell”

13

EE141

Subtractor/Adder
A - B = A + (-B)

 How do we form -B?
 1. complement B
 2. add 1

14

EE141

Delay in Ripple Adders
❑ Ripple delay amount is a function of the data inputs:

❑ However, we usually only consider the worst case delay on the critical path. There is
always at least one set of input data that exposes the worst case delay.

1 0 0 0 0 10 0

0 0 0 0

1 0 0 1 0 11 0

0 0 0 0

1 0 1 0 1 11 0

0 0 0 1

1 0 1 0 1 11 0

0 0 1 1

t0

t1

t2

t3

15

EE141

Adders (cont.)
Ripple Adder

Ripple adder is inherently slow because, in worst case
s7 must wait for c7 which must wait for c6 …

 T α n, Cost α n

How do we make it faster, perhaps with more cost?

16

EE141

Carry Select Adder

T = Tripple_adder / 2 + TMUX

COST = 1.5 * COSTripple_adder+ (n/2 + 1) * COSTMUX

17

EE141

Carry Select Adder
❑ Extending Carry-select to multiple blocks

❑ What is the optimal # of blocks and # of bits/block?
▪ If blocks too small delay dominated by total mux delay
▪ If blocks too large delay dominated by adder ripple delay

T α sqrt(N),
Cost ≈2*ripple + muxes 18

EE141

Carry Select Adder

❑ Compare to ripple adder delay:
Ttotal = 2 sqrt(N) TFA – TFA, assuming TFA = TMUX
For ripple adder Ttotal = N TFA

“cross-over” at N=3, Carry select faster for any value of N>3.
❑ Is sqrt(N) really the optimum?

▪ From right to left increase size of each block to better match delays
▪ Ex: 64-bit adder, use block sizes [12 11 10 9 8 7 7], the exact

answer depends on the relative delay of mux and FA
19(note: one less block than sqrt(N) solution)

EE141

Carry-lookahead and
Parallel Prefix

EE141

Adders with Delay α log(n)
Can carry generation be made to be a kind of “reduction operation”?

 Lowest delay for a reduction is a balanced tree.

log2n

log2n

x6x7 x4x5 x2x3 x0x1

N

Log(N)
Delay

• But in this case all intermediate values are required.

• One way is to use “Parallel Prefix” to compute the

carries.

y0 = x0

y1 = x0x1

y2 = x0x1x2

 .

 .

 .

Parallel Prefix requires that the operation be associative, but simple carry generation is not!
21

EE141

Carry Look-ahead Adders
❑ How do we arrange carry generation to be

associative?
❑ Reformulate basic adder stage:

carry “kill”

carry “propagate”

carry “generate”
ci+1 = gi + pici
si = pi ⊕ ci

a b ci ci+1 s

ki = ai’ bi’

pi = ai ⊕ bi

gi = ai bi

22

EE141

Carry Look-ahead Adders
❑ Ripple adder using p and g signals:

❑ So far, no advantage over ripple adder: T α N

p0
g0

s0 = p0 ⊕ c0
c1 = g0 + p0c0

s0
a0
b0

p1
g1

s0 = p1 ⊕ c1
c2 = g1 + p1c1

s1
a1
b1

p2
g2

s2 = p2 ⊕ c2
c3 = g2 + p2c2

s2
a2
b2

p3
g3

s3 = p3 ⊕ c3
c4 = g3 + p3c3

s3
a3
b3

c0

c4

pi = ai ⊕ bi
gi = ai bi

23

EE141

Carry Look-ahead Adders
❑ “Group” propagate and generate signals:

❑ P true if the group as a whole propagates a carry to cout

❑ G true if the group as a whole generates a carry

❑ Group P and G can be generated hierarchically.

pi
gi

pi+1
gi+1

pi+k
gi+k

P = pi pi+1 … pi+k
G = gi+k + pi+kgi+k-1 + … + (pi+1pi+2 … pi+k)gi

cin

cout

cout = G + Pcin

24

EE141

Carry Look-ahead Adders

a0
b0
a1
b1
a2
b2

a

a3
b3
a4
b4
a5
b5

b

c3 = Ga + Pac0

Pa

Ga

Pb

Gb

a6
b6
a7
b7
a8
b8

c

c6 = Gb + Pbc3

Pc

Gc

P = PaPbPc

G = Gc + PcGb + PbPcGa

c9 = G + Pc0

c0

9-bit Example of hierarchically
generated P and G signals:

25

EE141

c0

a0b0
s0

a1b1
s1

c1

a2
b2

s2

a3b3
s3

c3

c2

c0

c0

a4b4
s4

a5b5
s5

c5

a6b6
s6

a7b7

c7

c6

c0

c4

c0

c8

p,g

P,G

P,G

cin

cout

P,G
Pa,Ga

Pb,Gb

P = PaPb
G = Gb + GaPb

Cout = G + cinP

aibi
si

p,g

ci

ci+1

p = a ⊕ b
g = ab

s = p ⊕ ci

ci+1 = g + cip

8-bit Carry Look-
ahead Adder

26

EE141

p0
g0s0

p1
g1s1

c1= g0+p0c0

p1
g2s2

c2

p3
g3s3

c3= g2+p2c2

p4
g4s4

p5
g5s5

p6
g6s6

c6

p7
g7s7

c0

c5= g4+p4c4

c7= g6+p6c6

c4

c2=G8+P8c0

P8=p0p1

G8=g1+p1g0

P9=p2p3

c6=Ga+Pac4

Pa=p4p5

Ga=g5+p5g4

Pb=p6p7

G9=g3+p3g2

Gb=g7+p7g6

c4=Gc+Pcc0

Pc=P8P9

Gc=G9+P9G8

Pd=PaPb

Gd=Gb+PbGa

c8=Ge+Pec0

Pe=PcPd

Ge=Gd+PdGc

c0

c4

c8

8-bit Carry Look-ahead
Adder with 2-input gates.

27

EE141

Parallel-Prefix Carry Look-ahead Adders
❑ Ground truth specification of all carries directly (no grouping):

c0 = 0
c1 = g0 + p0c0 = g0
c2 = g1 + p1c1 = g1 + p1g0
c3 = g2 + p2c2 = g2 + p2g1 + p1p2g0
c4 = g3 + p3c3 = g3 + p3g2 + p3p2g1 + p4p3p2g0

 .
 .
 .

Binary (G, P)
associative operator

28Use binary (G,P) operator to form parallel prefix tree

ci+1 = gi + pici

Can be used to form all carries!

EE141

Parallel Prefix Adder Example

G = g1 + g0 p1
P = p1p0

g1 p1g2 p2g3 p3

G = g2 + g1 p2
P = p2p1

G = g3 + g2 p3
P = p3p2

g0 p0

G = g2 + g1 p2 + g0p2p1

 = c3
G = g3 + g2 p3 +(g1 + g0p1)p3p2

 = g3 + g2p3 + g1p3p2 + g0p3p2p1

 = c4

 c2

 c1

si = ai ⊕ bi ⊕ ci = pi ⊕ ci
29

EE141

Other Parallel Prefix Adder Architectures

Ladner-Fischer adder: minimum logic
depth, large fan-out requirement up to n/2

Kogge-Stone adder: minimum logic depth, and
full binary tree with minimum fan-out,
resulting in a fast adder but with a large area

Brent-Kung adder: minimum area, but high
logic depth

Han-Carlson adder: hybrid design
combining stages from the Brent-Kung and
Kogge-Stone adder 30

EE141

Carry look-ahead Wrap-up
❑ Adder delay Ο(logN).
❑ Cost?
❑ Can be applied with other techniques. Group P & G

signals can be generated for sub-adders, but another
carry propagation technique (for instance ripple) used
within the group.
▪ For instance on FPGA. Ripple carry up to 32 bits is fast, CLA

used to extend to large adders. CLA tree quickly generates
carry-in for upper blocks.

31

EE141

Bit-serial Addition, Adder
summary

EE141

Bit-serial Adder

❑ Addition of 2 n-bit numbers:
▪ takes n clock cycles,
▪ uses 1 FF, 1 FA cell, plus registers
▪ the bit streams may come from or go to other circuits, therefore the

registers might not be needed.

• A, B, and R held in shift-registers.
Shift right once per clock cycle.

• Reset is asserted by controller.

33

EE141

Adders on FPGAs

• Dedicated carry logic
provides fast
arithmetic carry
capability for high-
speed arithmetic
functions.

• On Virtex-5
• Cin to Cout (per

bit) delay = 40ps,
versus 900ps for
F to X delay.

• 64-bit add delay
= 2.5ns.

34

EE141

Adder Final Words

❑ Dynamic energy per addition for all of these is O(n).
❑ “O” notation hides the constants. Watch out for this!
❑ The “real” cost of the carry-select is at least 2X the “real” cost of

the ripple. “Real” cost of the CLA is probably at least 2X the
“real” cost of the carry-select.

❑ The actual multiplicative constants depend on the
implementation details and technology.

❑ FPGA and ASIC synthesis tools will try to choose the best
adder architecture automatically - assuming you specify
addition using the “+” operator, as in “assign A = B + C”

Type Cost Delay

Ripple O(N) O(N)

Carry-select O(N) O(sqrt(N))

Carry-lookahead O(N) O(log(N))

Bit-serial O(1) O(N)

35

