

EECS151/251A Spring 2021 Digital Design and Integrated Circuits

Instructor: John Wawrzynek

Lecture 24:

Clocks, Packaging, and Power Distribution

Announcements

- □ Virtual Front Row for today 4/20: □ Jose Rodriguez Rahul Arya Zitao Fang □ Jeremy Ferguson Please ask question or make comments! Homework assignment 10 posted - due next Monday.
- HW 11 final problem set posted end of this week.

Announcements□ End game:

14	4/20	Clock and Power Distribution	Checkpoint 2 due, , Checkpoint 3 & 4 Released	
	4/22	Testing, Faults, Error Correction Codes		
15	4/27	Inside Logic Synthesis Tools	Checkpoint 3 due	
	4/29	Wrap-up and Exam Review		
16	5/5	RRR No Lecture	Checkpoint 4	Final Checkoff due
	5/7	RRR No Lecture		
FINAL	5/14	No Class - Final Exam 7-10 PM		

Outline

Clock non-idealities
 Clock Distribution
 Chip packaging
 Power Distribution

Synchronous Timing - Review

Synchronous Timing

Register Timing Parameters

Output delays can be different for rising and falling data transitions

Timing Constraints

Timing Constraints

Cycle time (max): $T_{Clk} > t_{clk-q,max} + t_{logic,max} + t_{setup}$ Race margin (min): $t_{hold} < t_{clk-q,min} + t_{logic,min}$

Clock Nonidealities

Clock Nonidealities

□ Clock skew: *t_{sk}*

 Time difference between the sink (receiving) and source (launching) clock edge; deterministic + random

Clock jitter

- Temporal variations in consecutive edges of the clock signal; modulation + random noise
- Cycle-to-cycle (short-term) t_{JS}
- Long term t_{JL}

Variation of the pulse width

Important for level sensitive clocking

Clock Uncertainties

Sources of clock uncertainty

Clock Skew and Jitter

Both skew and jitter affect the effective cycle time and the race margin

Positive Skew

Launching edge arrives before the receiving edge

Negative Skew

Receiving edge arrives before the launching edge

Timing Constraints

 $\begin{array}{l} \textit{Minimum cycle time:} \\ \textit{T}_{clk} + \delta = \textit{t}_{clk-q,max} + \textit{t}_{setup} + \textit{t}_{logic,max} \end{array}$

Skew may be negative or positive

Timing Constraints

Hold time constraint: $t_{(clk-q,min)} + t_{(logic,min)} > t_{hold} + \delta$

Skew may be negative or positive

Jitter Contributes to Critical Path

Clock Constraints in Edge-Triggered Systems

If launching edge is late and receiving edge is early, the data will not be too late if:

$$t_{clk-q,max}$$
 + $t_{logic,max}$ + t_{setup} < T_{CLK} - $t_{JS,1}$ - $t_{JS,2}$ + δ

Minimum cycle time is determined by the maximum delays through the logic

$$t_{clk-q,max} + t_{logic,max} + t_{setup} - \delta + 2t_{JS} < T_{CLK}$$

Skew can be either positive or negative
Jitter t_{JS} usually expressed as peak-to-peak or n x RMS value

Datapath with Feedback

Clock Distribution

Clock Distribution

- Single clock generally used to synchronize all logic on the same chip (or region of chip)
 - Need to distribute clock over the entire region
 - While maintaining low skew/jitter
 - And without burning too much power

Clock Distribution

What's wrong with just routing wires to every point that needs a clock?

H-Tree

Equal wire length/number of buffers to get to every location

More realistic ASIC H-tree

[Restle98]

Chip Packaging

Chip Packaging

- Bond wires (~25µm) are used to connect the package to the chip
- Pads are arranged in a frame around the chip
- Pads are relatively large
 - ~100μm in 0.25μm technology, with 100μm pitch
 - 60μm x 80μm at 80μm pitch in 45nm
- Many chips are 'pad limited'

Pad Frame

Layout

Die Photo

Chip Packaging

(b) Ball grid array packaging

An alternative is 'flip-chip':

- Pads are distributed around the chip
- The solder balls are placed on pads
- The chip is 'flipped' onto the package
- Pads still large
 - But can have many more of them

Bonding Pad Design

ESD Protection

- When a chip is connected to a board or otherwise handled, there is unknown (potentially large) static voltage difference (a few kV)
- Equalizing potentials requires (large) charge flow through the pads
- Diodes sink this charge into the substrate need guard rings to pick it up.

Pads + ESD Protection

When Things Go Bad

[Maxim]

Power Distribution

Power Supply Distribution Issues

- IR drops
 - Voltage drops due to resistance is power wires
 - Slower circuits, false switching
- Metal Migration (electromigration)
 - chip failures
- Inductive Effects
 - bounce and oscillations on power nodes

All effects are helped by *shorter thicker wires*. Modern processes have special thick metal layers dedicated to power distribution. Area pads help keep connections to package short and distance from pad to circuit short.

Power Delivery

- Achieving good reliable power delivery requires a lot of resources:
 - ~70% of package pins just for power
 - Top 2-3 (thick) metal layers

All effects are helped by *shorter thicker wires*. Modern processes have special thick metal layers dedicated to power distribution. Area pads help keep connections to package short and distance from pad to circuit short.

Chip Metal Layers

Electromigration

□ If current density is too high - wires melts

 "On-chip wires: current limited to ~1mA/μm for 5-7 year lifetime

Power Supply Impedance (Z)

- Two principal elements increase Z:
 - Resistance of supply lines (IR drop)
 - Inductance of supply lines (L·di/dt drop)

40

Power Supply Impedance

IR voltage drop

Slower circuit operation because of series resistance with transistors: Rw MM

Rp

 $\hat{\tau} = (R_W + R_P) C_L$

IR drops generate "noise":

41

Scaling and Supply Impedance

 Typical target for supply impedance is to get 5-10% voltage variation of nominal supply (e.g., 100mV for 1V supply)

In traditional scaling V_{dd} drops while power stays constant.
 This forced drastic drop in required supply impedance:

 V_{dd} ↓, I_{dd} ↑ → |Z_{required}|↓↓

Extreme example:

Vdd = 1V, P=100W => Idd=100A

• For
$$\Delta V_{dd,max} = 100 \text{mV}$$
,
 $Z_{dd,max} = 100 \text{mV}/100 \text{A} = 1 \text{m}\Omega$

IR Drop Example

Intel Pentium 4: ~103W at ~1.275V

 $I_{dd} = 81$ Amps

- For 10% IR drop, total distribution resistance must be less than 1.6mΩ
- On-chip wire $R \approx 20 m\Omega/sq$. (thick metal)
 - Can't meet R requirement even with multiple, complete layers dedicated to power
 - Main motivation for flip-chip packaging

Layout Strategy

1. Keep distance form source of power/gnd as short as possible.

Popular On-Chip Power

Power network usually follows pre-defined template (often referred to as "power grid")

Inductive Bounce

Inductance in the power & ground paths results in voltage glitches (noise) on the Vdd & GND nodes.

On chip L value of wires is small => usually not significant except:

- 1.Very large currents: clock drivers, off-chip drivers
- 2.Package pins, bonding wires (1nH/mm)

Package pins can have from 2 - 40nH of inductance, depending on package type

Strategy:

1. Use multiple bonding pads (wiress) for Vdd and GND

2. Use on -chip by pass capacitors

Pin Inductance

- Major source of inductance is through the bonding pin connections to the chip package.
- C4 bump inductance is 25pH

wire-bond inductance of 1nH/mm

□ Example:

- Processor transient current is 50A in 20ps from 1V supply
- How many C4 bumps do we need to get supply noise spike of less than 10%?
- With wirebonds, how many wirebonds are needed?

Pin Inductance Example

Processor transient current is 50A in 20ps from 1V supply:

- $V = L \cdot \frac{dI}{dt} \qquad L = V \cdot \frac{dt}{dI} = 0.1V \cdot \frac{20ps}{50A} = 0.04pH$
 - C4 bump inductance is 25pH
 - How many C4 bumps do we need to get supply noise spike of less than 10%?

Inductors in parallel 1/add

 $\frac{25pH}{0.04pH} = 625$

 $\frac{1000pH}{0.04pH} > 25K!$

On-chip Decoupling Capacitors Help with Inductive and Resistive Effects

When transistors switch - current is drawn from C_D rather than through package pins and bonding wires - smooths our dI/dt.

 Distributed bypass capacitors also smooth out noise from IR drops.

MIM Cap :density (20-30 ff/um^2)

Decap cell in stdcell library added by tools.

Decoupling Capacitors On-chip and on-board

Decoupling capacitors are added:

- □ On the board (right under the supply pins)
- □ On the chip (under the supply straps, near large buffers)
- □ C_d helps avoid current rushing through supply wires
 - □ local store of charge
 - "smoothing filter" on supply voltage

Decoupling Capacitors

Under the die

