

EECS 151/251A Spring 2021 Digital Design and Integrated Circuits

Instructor:
John Wawrzynek

Lecture 6: CL

Announcements

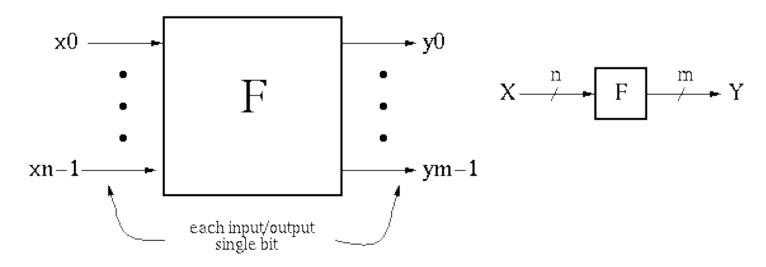
- □ Virtual Front Row for today 2/4:
 - □ Ellie Wang
 - □ Ben Tait
 - □ Victor Ho
 - Thanakul Wattanawong
 - □ Praveen Batra
- More questions/comments please!
- □ HW 1 being graded. Solutions out tomorrow, regrade requests through Wednesday next week.
- □ HW 2 due this Monday
- □ HW 3 out tomorrow.

Outline

- □ Three representations for combinational logic:
 - truth tables,
 - graphical (logic gates), and
 - algebraic equations
- Boolean Algebra
- Boolean Simplification
- □ Multi-level Logic, NAND/NOR, XOR

Representations of Combinational Logic

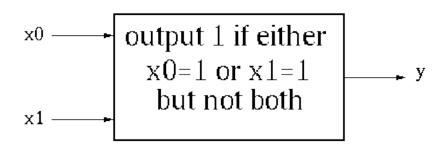
Combinational Logic (CL) Defined



 $y_i = f_i(x0, ..., xn-1)$, where x, y take on values {0,1}. Y is a function of only X, i.e., it is a "pure function".

- □ If we change X, Y will change immediately (well almost!).
 - □ There is an *implementation dependent* delay from X to Y.

CL Block Example #1



Truth Table Description:

<u>x0</u>	x 1	<u>y</u>
0	0	0
Ò	1	1
1	Q	1
1	1	0

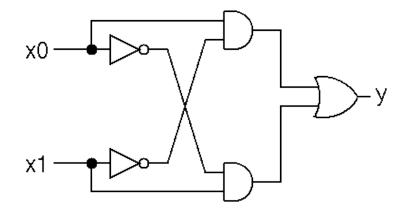
Boolean Equation:

$$y_0 = (x_0 \text{ AND not}(x_1))$$

$$OR (not(x_0) \text{ AND } x_1)$$

$$y_0 = x_0 x_1' + x_0' x_1$$

Gate Representation:

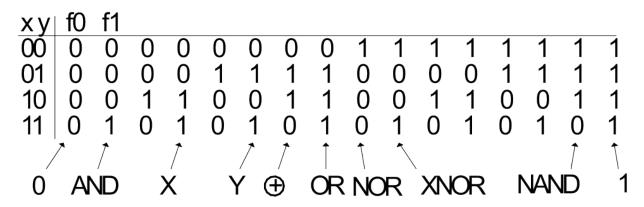


Boolean Algebra/Logic Circuits

- Why are they called "logic circuits"?
- □ Logic: The study of the principles of reasoning.
- □ The 19th Century Mathematician, George Boole, developed a math. system (algebra) involving logic, Boolean Algebra.
- His variables took on TRUE, FALSE
- □ Later Claude Shannon (father of information theory) showed (in his Master's thesis!) how to map Boolean Algebra to digital circuits:
- Primitive functions of Boolean Algebra:

a b	AND	a b	OR
0 0	0	0 0	0
0 1	0	0 1	1
10	0	10	1
11	1	11	1

Other logic functions of 2 variables (x,y)



Look at NOR and NAND:

- Theorem: Any Boolean function that can be expressed as a truth table can be expressed using NAND and NOR.
 - Proof sketch:

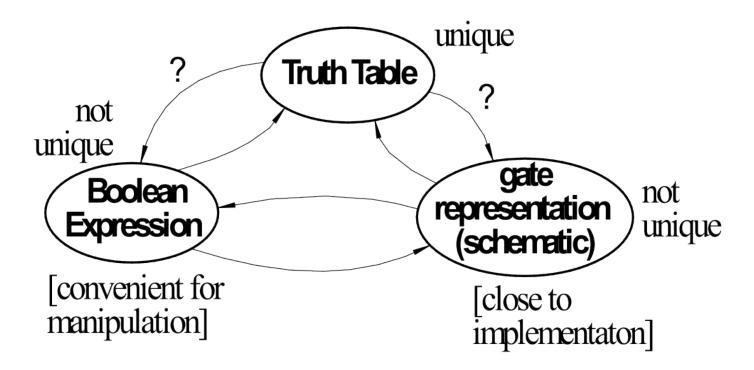
How would you show that either NAND or NOR is sufficient?

Announcements

- □ Virtual Front Row for today 2/9:
 - □ Naomi Sagan
 - □ Peter Trost
 - □ William Hsu
 - □ Neil Kulkarni
 - □ Victor Ho
- More questions/comments please!
- □ HW 1 graded. Regrade requests through Wednesday this week.
- □ HW 3 posted.

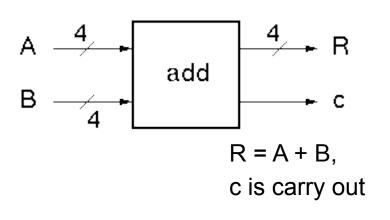
Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.

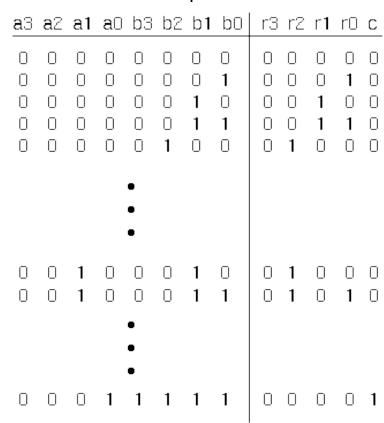


How do we convert from one to the other?

CL Block Example – 4 Bit Adder - where decomposition helps



Truth Table Representation:



256 rows!

In general: 2ⁿ rows for n inputs.

Is there a more efficient (compact) way to specify this function?

4-bit Adder Example

Motivate the adder circuit design by hand addition:

Add a0 and b0 as follows:

a	b	r	С	carry to next
0	0	0	0	stage
0	0 1 0 1	1	0	G.0.9
1	0	1	0	
1	1	0	1	

$$r = a XOR b = a \oplus b$$

 $c = a AND b = ab$

Add a1 and b1 as follows:

ci	а	b	r	CO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$r = a \oplus b \oplus c_i$$

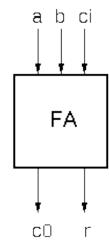
 $co = ab + ac_i + bc_i$

4-bit Adder Example

In general:

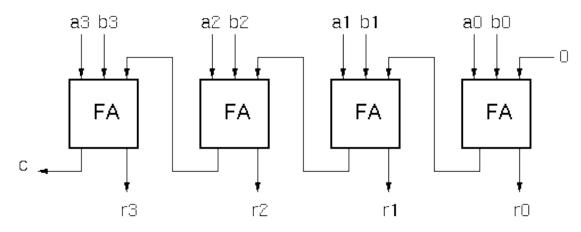
$$r_i = a_i \oplus b_i \oplus c_{in}$$

$$c_{out} = a_i c_{in} + a_i b_i + b_i c_{in} = c_{in} (a_i + b_i) + a_i b_i$$



"Full adder cell"

□ Now, the 4-bit adder:



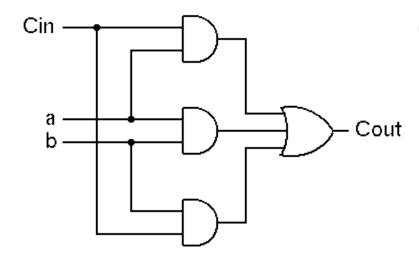
"ripple" adder

4-bit Adder Example

Graphical Representation of FA-cell

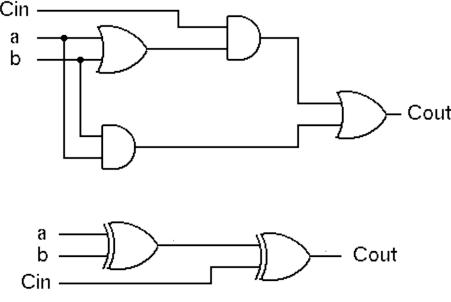
$$r_i = a_i \oplus b_i \oplus c_{in}$$

$$c_{out} = a_i c_{in} + a_i b_i + b_i c_{in}$$



• Alternative Implementation (with only 2-input gates):

$$r_i = (a_i \oplus b_i) \oplus c_{in}$$
$$c_{out} = c_{in}(a_i + b_i) + a_ib_i$$



Boolean Algebra

Boolean Algebra

Set of elements B, binary operators $\{+,\bullet\}$, unary operation $\{'\}$, such that the following axioms hold:

- 1. B contains at least two elements a, b such that $a \neq b$.
- 2. Closure: a,b in B, a + b in B, a' in B.
- 3. Communitive laws:

$$a+b=b+a$$
, $a \bullet b=b \bullet a$.

4. Identities: 0, 1 in Ba + 0 = a, $a \cdot 1 = a$.

$$a + 0 = a, \quad a - 1 = a.$$

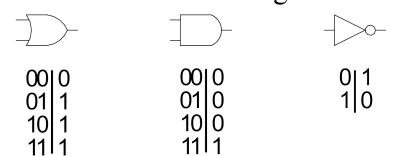
5. Distributive laws:

$$a + (b \bullet c) = (a + b) \bullet (a + c), \ a \bullet (b + c) = a \bullet b + a \bullet c.$$

6. Complement:

$$a + a' = 1$$
, $a \cdot a' = 0$.

$$B = \{0,1\}, + = OR, \bullet = AND, ' = NOT$$
 is a valid Boolean Algebra.



Some Laws (theorems) of Boolean Algebra

Duality: A dual of a Boolean expression is derived by interchanging OR and AND operations, and 0s and 1s (literals are left unchanged).

$${F(x_1, x_2, ..., x_n, 0, 1, +, \bullet)}^D = {F(x_1, x_2, ..., x_n, 1, 0, \bullet, +)}$$

Any law that is true for an expression is also true for its dual.

Operations with 0 and 1:

$$x + 0 = x$$
 $x * 1 = x$

$$x + 1 = 1$$
 $x * 0 = 0$

Idempotent Law:

$$x + x = x$$
 $x = x$

Involution Law:

$$(x')' = x$$

Laws of Complementarity:

$$x + x' = 1$$
 $x x' = 0$

Commutative Law:

$$x + y = y + x$$
 $x y = y x$

Some Laws (theorems) of Boolean Algebra (cont.)

Associative Laws:

$$(x + y) + z = x + (y + z)$$

$$x y z = x (y z)$$

Distributive Laws:

$$x (y + z) = (x y) + (x z)$$

$$x + (y z) = (x + y)(x + z)$$

"Simplification" Theorems:

$$(x + y) (x + y') = x$$

 $x (x + y) = x$
 $x(x' + y) = xy$

DeMorgan's Law:

$$(x + y + z + ...)' = x'y'z'$$

$$(x y z ...)' = x' + y' + z'$$

Theorem for Multiplying and Factoring:

$$(x + y) (x' + z) = x z + x' y$$

Consensus Theorem:

$$x y + y z + x' z = (x + y) (y + z) (x' + z)$$

 $x y + x' z = (x + y) (x' + z)$

DeMorgan's Law

$$(x + y)' = x'y'$$

$$(x y)' = x' + y'$$

Exhaustive Proof

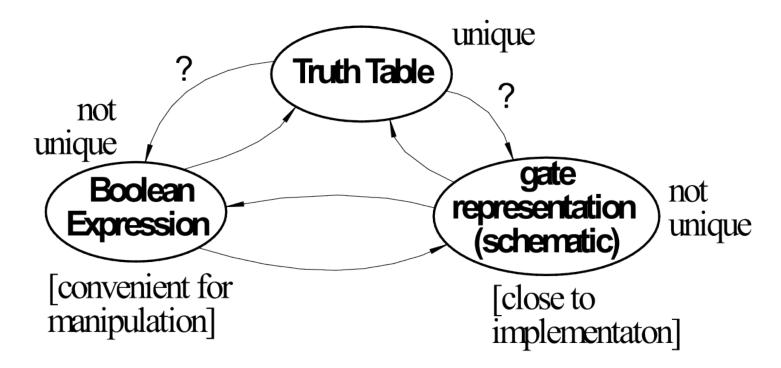
X	y x'	y'	(x + y)'	x'y'
0 (0 1	1	1	1
0	1 1	0	0	0
1 (0 0	1	0	0
1	1 0	0	0	0

Exhaustive Proof

X	У	X'	y'	(x y)'	x' + y'
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.



How do we convert from one to the other?

Canonical Forms

- Standard form for a Boolean expression unique algebraic expression directly from a true table (TT) description.
- □ Two Types:
 - * Sum of Products (SOP)
 - * Product of Sums (POS)
- <u>Sum of Products</u> (disjunctive normal form, <u>minterm</u> expansion). Example:

```
Minterms
           abc | ff'
           0 0 0 0 1
a'b'c'
                          One product (and) term for each 1 in f:
       0 0 1 | 0 1
a'b'c'
                            f = a'bc + ab'c' + ab'c + abc' + abc
          0 1 0 0 1
a'bc'
                            f' = a'b'c' + a'b'c + a'bc'
           0 1 1 1 1 0
a'bc
ab'c'
           1 0 0 1 1 0
                                  (enumerate all the ways the
           1 0 1 | 1 0
ab'c
                                  function could evaluate to 1)
           1 1 0 | 1 0
abc'
           1 1 1 1 0
abc
```

What is the cost?

Sum of Products (cont.)

Canonical Forms are usually not minimal:

Our Example:

```
f = a'bc + ab'c' + ab'c + abc' + abc (xy' + xy = x)
    = a'bc + ab' + ab
    = a'bc + a
                                  (x'y + x = y + x)
    = a + bc
f' = a'b'c' + a'b'c + a'bc'
   = a'b' + a'bc'
   = a' (b' + bc')
   = a' (b' + c')
   = a'b' + a'c'
```

Canonical Forms

• <u>Product of Sums</u> (conjunctive normal form, <u>maxterm</u> expansion).

Example:

• • • • • • • • • • • • • • • • • • •	
maxterms	ab <u>c</u> ff'
a+b+c	0 0 0 0 1
a+b+c	0 0 1 0 1 One sum (or) term for each 0 in f:
a+b '+c	$0 \ 1 \ 0 \ 1 $ $f = (a+b+c)(a+b+c')(a+b'+c)$
a+b '+c '	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
a '+b+c	1 0 0 1 0
a '+b+c '	1 0 1 1 0 (enumerate all the ways the
a '+b '+c	1 1 0 1 1 0 function could evaluate to 0)
a '+b '+c '	1 1 1 0

What is the cost?

Boolean Simplification

Algebraic Simplification Example

Ex: full adder (FA) carry out function (in canonical

form):

Cout = a'bc + abc' + abc' + abc

ci	а	b	r	CC
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Algebraic Simplification

```
Cout = a'bc + ab'c + abc' + abc'
     = a'bc + ab'c + abc' + abc + abc
     = a'bc + abc + ab'c + abc' + abc
     = (a' + a)bc + ab'c + abc' + abc'
     = (1)bc + ab'c + abc' + abc
     = bc + ab'c + abc' + abc + abc
     = bc + ab'c + abc + abc' + abc
     = bc + a(b' + b)c + abc' + abc
     = bc + a(1)c + abc' + abc'
     = bc + ac + ab(c' + c)
     = bc + ac + ab(1)
     = bc + ac + ab
```

Outline for remaining CL Topics

- K-map method of two-level logic simplification
- Multi-level Logic
- NAND/NOR networks
- □ EXOR revisited

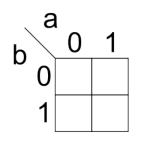
Algorithmic Two-level Logic Simplification

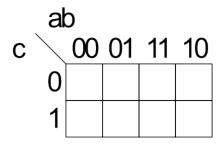
Key tool: The Uniting Theorem:

$$xy' + xy = x (y' + y) = x (1) = x$$

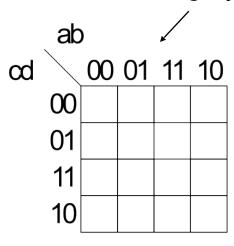
Karnaugh Map Method

K-map is an alternative method of representing the TT and to help visual the adjacencies.





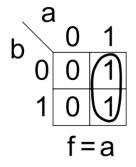
Note: "gray code" labeling.

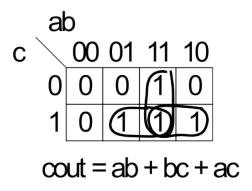


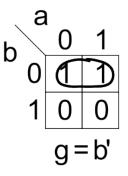
5 & 6 variable k-maps possible

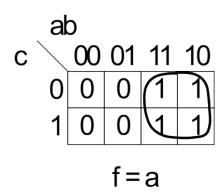
Karnaugh Map Method

Adjacent groups of 1's represent product terms





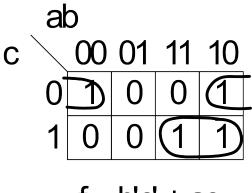




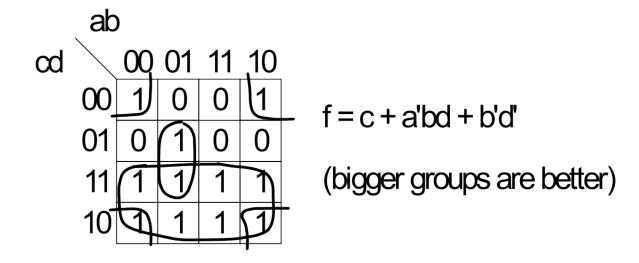
K-map Simplification

- 1. Draw K-map of the appropriate number of variables (between 2 and 6)
- 2. Fill in map with function values from truth table.
- 3. Form groups of 1's.
 - ✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, ..., 2x2, 2x4, ...)
 - ✓ Form as large as possible groups and as few groups as possible.
 - ✓ Groups can overlap (this helps make larger groups)
 - ✓ Remember K-map is periodical in all dimensions (groups can cross over edges of map and continue on other side)
- 4. For each group write a product term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 1 and complemented variable for constant 0)
- 5. Form Boolean expression as sum-of-products.

K-maps (cont.)



$$f = b'c' + ac$$



Product-of-Sums K-map

- 1. Form groups of 0's instead of 1's.
- 2. For each group write a sum term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 0 and complemented variable for constant 1)
- 3. Form Boolean expression as product-of-sums.

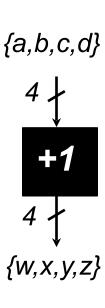
	ab)			
∞		00	01	11	10
	00	1(\bigcirc	0	1
	01	\bigcirc	1	0	0
	11	1	1	1	1
	10	1	1	1	1

$$f = (b' + c + d)(a' + c + d')(b + c + d')$$

BCD incrementer example

Binary Coded Decimal

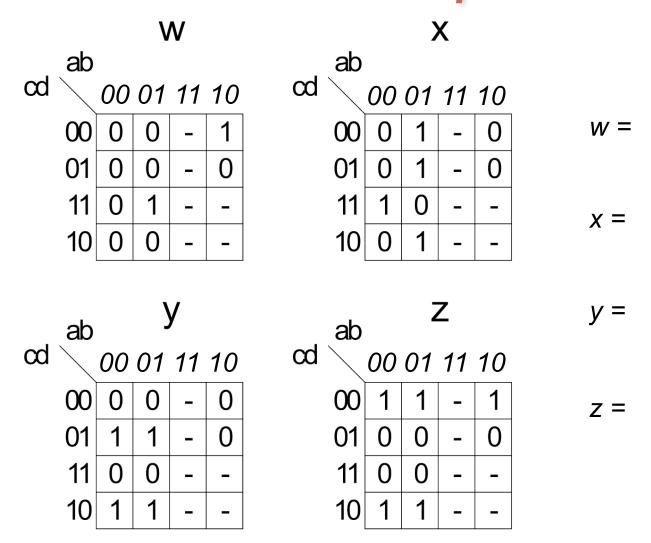
```
abcd wxyz
0000 0001
```



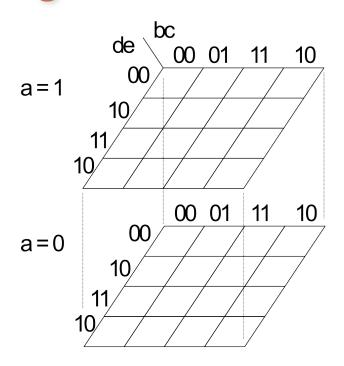
BCD Incrementer Example

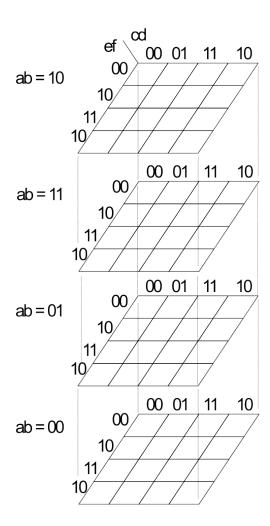
- Note one map for each output variable.
- □ Function includes "don't cares" (shown as "-" in the table).
 - These correspond to places in the function where we don't care about its value, because we don't expect some particular input patterns.
 - We are free to assign either 0 or 1 to each don't care in the function, as a means to increase group sizes.
- □ In general, you might choose to write product-ofsums or sum-of-products according to which one leads to a simpler expression.

BCD incrementer example



Higher Dimensional K-maps





Boolean Simplification

– Multi-level Logic

Multi-level Combinational Logic

- Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
- ☐ Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND

=> ~50 transistors

delay: 3-input OR gate delay + 7-input AND gate delay

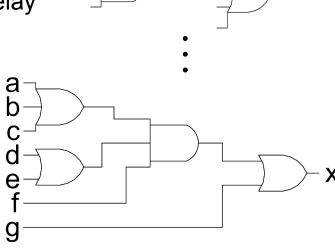
□ Factored form:

$$x = (a + b + c) (d + e) f + g$$

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND

=> ~20 transistors

<u>delay:</u> 3-input OR + 3-input AND + 2-input OR



Footnote: NAND would be used in place of all ANDs and ORs.

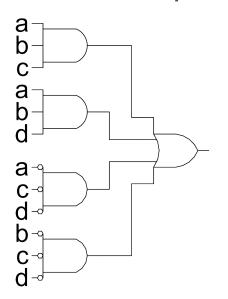
Which is faster?

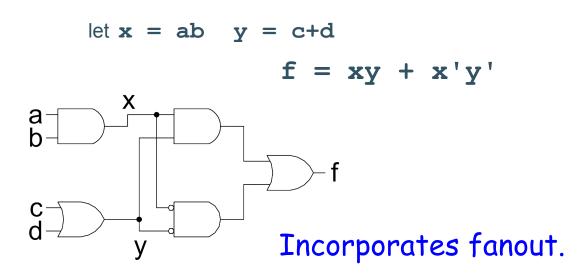
In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay.

Sometimes a tradeoff between cost and delay.

Multi-level Combinational Logic

Another Example: F = abc + abd +a'c'd' + b'c'd'





No convenient hand methods exist for multi-level logic simplification:

- a) CAD Tools use sophisticated algorithms and heuristics
 Guess what? These problems tend to be NP-complete
- b) Humans and tools often exploit some special structure (example adder)

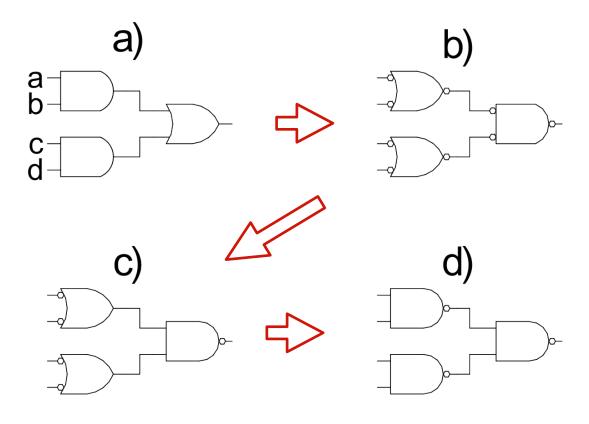
NAND-NAND & NOR-NOR Networks

DeMorgan's Law Review:

push bubbles or introduce in pairs or remove pairs: (x')' = x.

NAND-NAND & NOR-NOR Networks

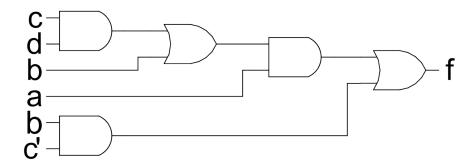
Mapping from AND/OR to NAND/NAND



Multi-level Networks

Convert to NANDs:

$$F = a(b + cd) + bc'$$

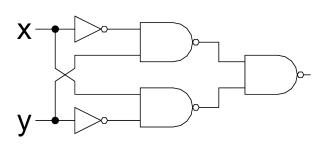


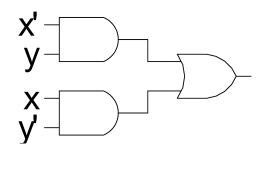
EXOR Function Implementations

Parity, addition mod 2

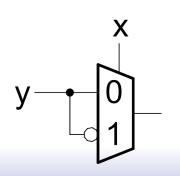
$$x \oplus y = x'y + xy'$$

ху	xor	xnor
0 0	0	1
0 1	1	0
10	1	0
1 1	0	1





Another approach:



if x=0 then y else y'

