
EE141

EECS 151/251A 
Spring	2021  
Digital	Design	and	Integrated	
Circuits
Instructor:		
John	Wawrzynek

Lecture 7: FSMs Part 1



EE141

Finite State Machines



EE141

Finite State Machines (FSMs)
❑ FSMs: 

❑ Can model behavior of any 
sequential circuit 

❑ Useful representation for 
designing sequential circuits 

❑ As with all sequential 
circuits: output depends on 
present and past inputs 
❑ effect of past inputs 

represented by the 
current state 

❑ Behavior is represented by 
State Transition Diagram: 
▪ traverse one edge per clock 

cycle.
 3



EE141

FSM Implementation

❑ Flip-flops form state register 

❑ number of states ≤ 2number of flip-flops 

❑ CL (combinational logic) calculates next state and output 
❑ Remember:  The FSM follows exactly one edge per cycle.

Later we will learn how to implement in Verilog.  Now we 
learn how to design “by hand” to the gate level.

 4



EE141

Parity Checker: FSM Example
A string of bits has “even parity” if the number of 1's in the string is even. 
❑ Design a circuit that accepts a infinite serial stream of bits, and outputs a 0 

if the parity thus far is even and outputs a 1 if odd:

Next we take this example through the “formal design process”.  But 
first, can you guess a circuit that performs this function?

 5



EE141

By-hand Design Process (a)

“State Transition Diagram” 
▪ circuit is in one of two 

“states”. 
▪ transition on each cycle 

with each new input, over 
exactly one arc (edge). 

▪ Output depends on which 
state the circuit is in.

 6



EE141

By-hand Design Process (b)
State Transition Table: 

Invent a code to represent states: 
Let 0 = EVEN state, 1 = ODD state

present                   next 
state       OUT  IN   state 

 EVEN       0     0    EVEN 
 EVEN       0     1     ODD 
 ODD         1     0     ODD 
 ODD         1     1    EVEN

present state (ps)   OUT   IN   next state (ns) 
            0                    0      0                0 
            0                    0      1                1 
            1                    1      0                1 
            1                    1      1                0

Derive logic equations from 
table (how?): 

OUT = PS 
NS = PS xor IN

 7



EE141

By-hand Design Process (c)

❑ Circuit Diagram: 

▪ XOR gate for NS 
calculation 

▪ Flip-Flop to hold present 
state 

▪ no logic needed for output 
in this example.

Logic equations from table: 
OUT = PS 
NS = PS xor IN

nsps

 8



EE141

“Formal” By-hand Design Process
Review of Design Steps: 

 1. Specify circuit function (English) 
 2. Draw state transition diagram 
 3. Write down symbolic state transition table 
 4. Write down encoded state transition table 
 5. Derive logic equations 
 6. Derive circuit diagram 
  Register to hold state 
  Combinational Logic for Next State and Outputs

 9



EE141

Another FSM Design 
Example



EE141

Combination Lock Example

❑ Used to allow entry to a locked room: 
2-bit serial combination.  Example 01,11: 
 1. Set switches to 01, press ENTER 
 2. Set switches to 11, press ENTER 
 3. OPEN is asserted (OPEN=1). 
  If wrong code, ERROR is asserted (after second combo word entry). 
  Press Reset at anytime to try again.

 11



EE141

Combinational Lock STD

Assume the ENTER 
button when pressed 
generates a pulse for 
only one clock cycle.

 12



EE141

Symbolic State Transition Table
RESET  ENTER  COM1  COM2  Preset State         Next State  OPEN ERROR 
0 0 * * START  START 0 0 
0 1 0 * START  BAD1 0 0 
0 1 1 * START  OK1 0 0 
0 0 * * OK1  OK1 0 0 
0 1 * 0 OK1  BAD2 0 0 
0 1 * 1 OK1  OK2 0 0 
0 * * * OK2  OK2 1 0 
0 0 * * BAD1  BAD1 0 0 
0 1 * * BAD1  BAD2 0 0 
0 * * * BAD2  BAD2 0 1 
1 * * * *  START 0 0

Decoder logic for checking 
combination (01,11):

 13



EE141

Encoded ST Table
• Assign states: 
START=000, OK1=001, OK2=011 
BAD1=100, BAD2=101 
• Omit reset.  Assume that primitive flip-flops has reset 

input. 
• Rows not shown have don't cares in output.  

Correspond to invalid PS values. 

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0

 14



EE141

Moore Versus Mealy 
Machines



EE141

FSM Implementation Notes
❑ All examples so far 

generate output 
based only on the 
present state, 
commonly called a 
“Moore Machine”: 

❑ If output functions 
include both 
present state and 
input then called a 
“Mealy Machine”:

 16



EE141

Finite State Machines
❑ Example: Edge Detector 
  Bit are received one at a time (one per cycle),  
  such as:   000111010       time 

   
  Design a circuit that asserts 
  its output for one cycle when  
  the input bit stream changes 
  from 0 to 1.   
  
  We'll try two different solutions: Moore then Mealy.

FSM

CLK

IN OUT

 17



EE141

State Transition Diagram Solution A

IN   PS    NS  OUT 
 0    00     00    0 
 1    00     01    0 
 0    01     00    1 
 1    01     11    1 
 0    11     00    0 
 1    11     11    0

ZERO

CHANGE

ONE

 18



EE141

Solution A, circuit derivation
IN   PS    NS  OUT 
 0    00     00    0 
 1    00     01    0 
 0    01     00    1 
 1    01     11    1 
 0    11     00    0 
 1    11     11    0

ZERO

CHANGE

ONE

 19



EE141

Solution B
Output depends not only on PS but also on input, IN

IN   PS   NS   OUT 
 0     0      0       0 
 0     1      0       0 
 1     0      1       1 
 1     1      1       0

Let ZERO=0, 
        ONE=1

NS = IN, OUT = IN PS'

What's the intuition about this solution?

 20



EE141

Edge detector timing diagrams

• Solution A: both edges of output follow the clock 
• Solution B: output rises with input rising edge and is 

asynchronous wrt the clock, output fails synchronous with 
next clock edge

 21

Moore

Mealy



EE141

FSM Comparison
Solution A 

Moore Machine 
❑ output function only of PS 
❑ maybe more states (why?) 
❑ synchronous outputs 

▪ Input glitches not send at output 
▪ one cycle “delay” 
▪ full cycle of stable output

Solution B 
Mealy Machine 

• output function of both PS & input 
• maybe fewer states 
• asynchronous outputs 
– if input glitches, so does output 
– output immediately available 
– output may not be stable long enough to 

be useful (below):

If output of Mealy FSM 
goes through 
combinational logic before 
being registered, the CL 
might delay the signal and 
it could be missed by the 
clock edge (or violate set-
up time requirement) 

 22



EE141

FSM Moore and Mealy Review
Moore Machine Mealy Machine

 23



EE141

Final Notes on Moore versus Mealy
1. A given state machine could have both Moore and Mealy 

style outputs.  Nothing wrong with this, but you need to be 
aware of the timing differences between the two types. 

2. The output timing behavior of the Moore machine can be 
achieved in a Mealy machine by “registering” the Mealy 
output values:

 24


