1. A MOSFET gain stage is shown below.

\[V_i = 0.8\, \text{V} \]
\[k' = 60\, \mu\text{A}/\text{V}^2 \]
\[\frac{W}{L} = 10 \]

a) Choose \(V_{GG} \) and \(R_L \) for a bias current of 300\,\mu\text{A} and a small-signal voltage gain of 3.

b) Use SPICE to plot out the large signal transfer characteristic for signal input \(V_i \) between \(\pm 2\, \text{V} \). Verify (a).

c) Calculate \(HD_2 \) and \(HD_3 \) in \(V_o \) for a sinusoidal output voltage of 0-peak amplitude of 300 mV and also calculate the output voltage bias point shift. Verify with SPICE.

2. A power output stage is shown below.

\[\beta_0 = 100 \]
\[I_S = 10^{-14}\, \text{A} \]
\[I_K = 400\, \text{mA} \]
\[\beta = \frac{I_C}{I_B} = \frac{\beta_0}{1 + \frac{I_C}{I_K}} \]

a) Choose \(I_X \) for a bias current \(I_{CQ} = 200\, \text{mA} \).

b) Express \(I_C \) as a function of \(I_B \). Thus derive a power series linking \((I_C - I_{CQ}) \) and \(I_i \). Thus calculate the maximum average sinusoidal signal power which can be delivered to \(R_L \) for \(HD_2 \leq 5\% \). Verify with SPICE.