1. A receiver input stage is shown below. Calculate the maximum interfering signal voltage at V_i for $IM_3 < 1\%$.

2. Calculate IM_2 and IM_3 in the circuit shown below, for two sinusoidal voltages of o-peak amplitude 300 mV each applied at V_i. Check with SPICE by simulating HD_2 and HD_3.

$$k' = 60 \mu A/V^2$$

$$V_t = 0.8 V$$

$$\frac{W}{L} = 10$$
3. A feedback amplifier is shown below.

\[\beta_0 = 100 \]
\[I_s = 10^{-16} A \]

a) Calculate the small-signal voltage gain of the circuit and the loop gain at \(f = 1 \text{MHz} \).

b) Calculate \(HD_2 \) in \(V_o \) for a 1V peak-peak sinusoidal output voltage at \(f = 1 \text{MHz} \), assuming \(Q_1 \) is the major source of distortion. Check with SPICE.