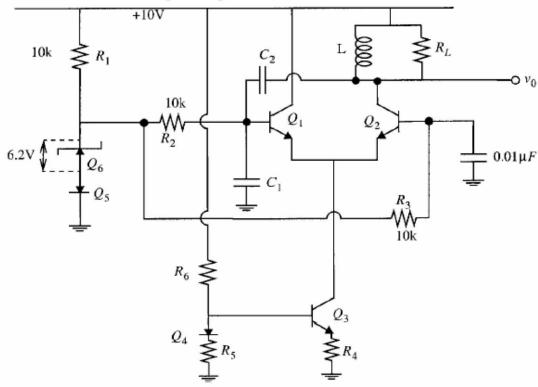
UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences


VCO Example Problem Set

EECS 142

a) Design an LC oscillator to deliver 1.5V rms to $R_L = 1k\Omega$ at $f_0 = 10$ MHz using the circuit shown below. Use a loaded Q of 15 and assume the unloaded coil Q is 200. Calculate HD_3 and HD_5 in v_0 . Verify the values of v_0 , f_0 , HD_3 and HD_5 using SPICE. Examine the waveform of I_{C2} and compare with v_0 .

Device data:
$$C_{cs} = 1$$
 pF, $C_{\mu 0} = 0.5$ pF, $m = \frac{1}{2}$, $C_{je0} = 2$ pF, $m = \frac{1}{3}$, $f_T = 300$ MHz at $I_C = 2$ mA, $β = 100$, $I_s = 10^{-15}$ A, $r_b = 200Ω$, $V_A = 100$ V

b) If the oscillation builds up from a small noise voltage, calculate the time taken for v_0 to go from $1\mu V$ rms to 0.5 V rms, assuming linear operation.

All transistors have equal areas. Neglect excess phase shift in the initial design but include charge storage in SPICE. Model the Zener diode as a dc voltage source.