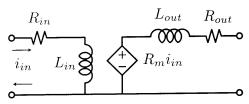
Midterm Exam (closed book) Tuesday, October 19, 2004

Guidelines: Closed book. You may use a calculator. Do not unstaple the exam. *Warning*: Illustrations not to scale.

1. A new device has been invented with the following I-V characteristic:

$$V_o = -K_v \frac{1}{1 + \left(\frac{I_{in}}{I_p}\right)}$$



This relation holds for $I_{in} > 0$ and for any passive termination. The device parameters are as follows: $I_p = 750 \,\mu\text{A}$, $K_v = .6 \,\text{V}$. A small-signal model including layout parasitics is shown above.

(a) (6 points) Calculate an expression for the maximum gain of the amplifier at 10 GHz. Note:

$$G_{Tu,max} = \frac{|z_{21}|^2}{4\Re(z_{11})\Re(z_{22})}$$

By inspection
$$\frac{2\pi}{2n} = Rin + j\omega Lin$$
 $\frac{2m}{2n} = Rout + j\omega Lin$
 $\frac{2\pi}{2n} = Rout$
 $\frac{2\pi}{2n} = Rin + j\omega Lin$
 $\frac{2\pi}{2n} = Rout$
 $\frac{2\pi}{2n} = Rin + j\omega Lin$
 $\frac{2\pi}{2n} = Rout$
 $\frac{2\pi}{2n} = Rin + j\omega Lin$
 $\frac{2\pi}{2n} = Rout$
 $\frac{2\pi}{2n} = Rin + j\omega Lin$
 $\frac{2\pi}{2n} = Rout$
 $\frac{2\pi}{2n} = Rin + j\omega Lin$
 $\frac{2\pi}{2n} = Rout + j\omega Lin$
 $\frac{2\pi}{2n}$

(b) (10 points) Design a matching network to acheive an input match with $R_S = 50 \,\Omega$. Assume that $R_{in} = 5 \,\Omega$ and $L_{in} = 3 \,\text{nH}$. Draw the complete input network to the amplifier and specify the bandwidth of the match. Note that $f_0 = 10 \,\text{GHz}$.

$$Q = \sqrt{50} - 1 = 3$$

$$X_{5} = 3 \times 5 = 15$$

$$X_{6} = (1 + 0^{2}) \cdot 5$$

$$X_{7} = (1 + 0^{2}) \cdot 5$$

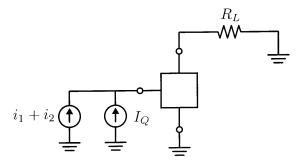
$$X_{7} = (1 + 0^{2}) \cdot 5$$

$$X_{7} = (1 + 0^{2}) \cdot 5 = (1 + 0^{2}) \cdot 5 = (1 + 0^{2}) \cdot 5$$

$$X_{7} = (1 + 0^{2}) \cdot 5 = (1 + 0^{2}) \cdot 5 = (1 + 0^{2}) \cdot 5$$

$$X_{7} = (1 + 0^{2}) \cdot 5 = (1 + 0^{2})$$

$$B = \frac{40}{2} = \frac{106}{3} = 3.33 GHz$$



(c) (10 points) For the circuit shown above, calculate the IM_3 at low frequency for two current input signals at 100 MHz and 101 MHz of magnitude 100 μ A. The circuit is biased as shown with $I_Q=2\,\mathrm{mA}$.

$$V_{o} = -k_{V} \frac{1}{(1 + \frac{i_{M} + I_{A}}{I_{P}})}$$

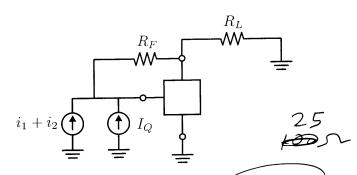
$$= -k_{V} \frac{1}{(1 + \frac{t_{A}}{I_{P}})(1 + \frac{i_{M}}{I_{X}})} \frac{I_{X} = \frac{1}{I_{P} + I_{A}}}{(I_{X} = \frac{1}{I_{P} + I_{A}})}$$

$$V_{o} = -k_{V} \frac{1}{(1 + \frac{t_{A}}{I_{P}})(1 + \frac{i_{M}}{I_{X}})}{(1 + \frac{t_{A}}{I_{P}} + \frac{t_{A}}{I_{X}} + \frac{t_{A}}{I_{X}} + \frac{t_{A}}{I_{X}}} + \frac{t_{A}}{I_{X}} + \cdots)$$

$$I_{M_{3}} = \frac{3}{4} \frac{a_{3}}{a_{1}} S_{1}^{2} = \frac{3}{4} \frac{1}{I_{X}} \cdot T_{X} S_{1}^{2}$$

$$= \frac{3}{4} \left(\frac{i_{M}}{I_{X}}\right)^{2} \frac{I_{X} = 2mA + 0.75mA}{i_{N} = 100mA}$$

$$= -60 dac$$



(d) (10 points) Assume a shunt feedback resistor of value $R_F = 1 \text{ k}\Omega$ is added to the circuit. Calculate HD_2 under this condition. Assume $R_F \gg R_{in}$.

$$i_{F} = \frac{V_{o}}{RF} \qquad f = \frac{1}{2}$$

$$T = q_{1}f = \frac{Rm}{RF}$$

$$R_{m} = \frac{RV}{1 + \frac{1}{2}} \qquad I_{X} = \left(\frac{0.6}{1 + \frac{2m}{0.75}}\right) \qquad \frac{1}{2.75m}$$

$$= 5q.5 \qquad \Omega$$

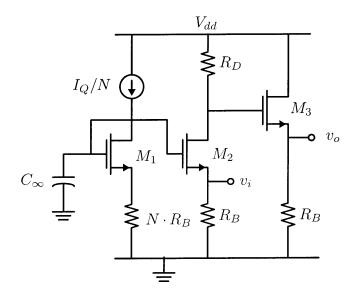
$$T = \frac{5q.5}{275} = 2.38$$

$$HD_{2} = \frac{1}{2} \qquad \frac{q_{2}}{q_{1}^{2}} \qquad \frac{1}{1 + T}$$

$$= \frac{1}{2} \qquad I_{X} \qquad (1 + T) \qquad X$$

$$\left(1 + \frac{1}{2}a\right)$$

$$|+D_2 = \frac{1}{2} \left(\frac{1}{1+\frac{Ta}{Tp}} \right) \left(\frac{1}{1+T} \right)$$
 Som = -21 dBc



- 2. The amplifier shown above is designed in a triple-well process (body and source are shorted). Assume that the resistor $R_B \gg \frac{1}{g_m}$ and $R_D \ll r_o$.
 - (a) (10 points) Calculate the bandwidth of the above amplifier. Assume the amplifier is designed for an input and output match.

DRAIN OF M2

$$C_{tot} = C_{db2} + C_{\mu 1} + \frac{C_{953}}{1+9_{n3}R_3} + C_{\mu 2}$$

$$R_{tot} = R_0$$

$$T = R_0 C_{tot}$$

$$f = L_{2trt}$$

(b) (10 points) Calculate $G_{T,max}$ for this amplifier. Explain your assumptions.

$$Re(y_{11}) = 5mz \qquad y_{21} = \frac{iz}{v_1|_{v_2=0}} = 9mz Ro 9mz$$

$$Re(y_{11}) = 9mz \qquad y_{21} = \frac{iz}{v_1|_{v_2=0}} = 9mz Ro 9mz$$

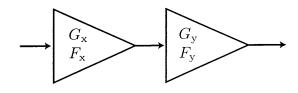
$$\frac{(y_{21}|^2)}{4Re(y_{11})Re(y_{21})} = \frac{1}{4} = \frac{9mz}{9mz} \frac{Ro^2 9mz}{9mz} = \frac{1}{4} \left(\frac{Ro}{Rs}\right)^2$$

(c) (16 points) Calculate the noise figure for the amplifier. Assume the amplifier is driven by a source with resistance R_S and loaded by a matched load $R_L = R_S$. Assume the amplifier is designed for an input and output match. Ignore gate

$$\begin{aligned}
\mathcal{V}_{1} &= \mathcal{V}_{RD} + \frac{1}{4} \left(\frac{1}{1+9_{m}R_{S}} \right) R_{D} + \frac{1}{4} s \left(\frac{9_{m}R_{S}}{1+9_{m}R_{S}} \right) R_{D} \\
9_{m}R_{S} &= 1 \\
\overline{\mathcal{V}_{1}^{2}} &= \overline{\mathcal{V}_{RO}^{2}} + \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} R_{D}^{2} + \frac{1}{4} \frac{1}{4} \frac{1}{4} R_{D}^{2} \\
\overline{\mathcal{V}_{0}^{2}} &= \overline{\mathcal{V}_{1}^{2}} \left(\frac{9_{m}R_{S}}{1+9_{m}R_{S}} \right)^{2} + \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{R_{S}^{2}}{1+9_{m}R_{S}^{2}} \\
&= \overline{\mathcal{V}_{1}^{2}} \frac{1}{4} + \frac{1}{4} \frac{1$$

$$= 1 + \frac{4R_s}{R_D} + \left(\frac{r}{\alpha}\right) \frac{g_n R_s}{R_s} + 4 \left(\frac{R_s}{R_D}\right)^3$$

3. You would like to design an amplifier with a power gain of 50 dB from two amplifiers, each with the following characteristics:



$$G_1 = 30 \, dB$$

 $NF_1 = 1.7 \, dB = 1.479$

$$G_2 = 20 \, \mathrm{dB}$$

 $NF_2 = 1.3 \, \mathrm{dB}$ = 1.3 49

(a) (8 points) Find the optimal ordering of the amplifiers in cascade to acheive the lowest possible noise figure.

$$F_{12} = F_1 + \frac{F_{2-1}}{G_1} = 1.479$$

 $F_{21} = 1.349 + \frac{0.479}{100} = 1.354$

$$F_{21} = 1.349 + \frac{0.479}{100} = 1.354$$

$$M_1 = \frac{G_1 F_1 - 1}{G_1 - 1} = 1.479$$
 $M_2 = 1.353$

(b) (10 points) Find the lowest possible signal power (minimum detectable signal) to maintain an $SNR_o > 10\,\mathrm{dB}$. Assume the input noise is from a source resistance $R_S = 50\,\Omega$ and the communication bandwidth is 1 MHz.

$$SNR_0 = \frac{SNR_1}{F} > 10$$

 $SNR_1 > 10 \cdot F = (3.54)$
 $P_1 > 13.54 \cdot P_{noise} = 13.54 \cdot kT \cdot B$
 $= (3.54 \cdot 4 \times 10^{-21} \text{ W} \cdot 10^6 = 5.42 \times 10^{-14} \text{ W}$
 $= -103 \text{ dBm}$

(c) (10 points) Assume that the system is designed to work with a signal as large as $-10\,\mathrm{dBm}$. What's the requires IIP_3 for the entire system to maintain a signal-to-distortion $SDR > 10\,\mathrm{dB}$.

SDR 710

$$\frac{Pi}{Pd}$$
 70 \Rightarrow $Pd < \frac{Pi}{10} = \frac{0.1 \text{mW}}{10} = 0.0 \text{lmW}$
 IM_3 DEGRADES BY $2d3/(aB)$ (NPTT

 $INPOT$ INCREASES BY $5d3 \Rightarrow IM_3 = 0d3$
 $IIP_3 = -10dBm + 5d3m = -5dBm$