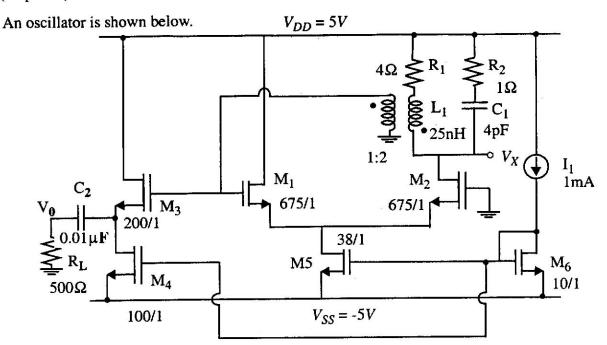

2.) (17 points)

A Mixer is shown below. Mixing occurs when the current in the differential pair is pumped by Q1.

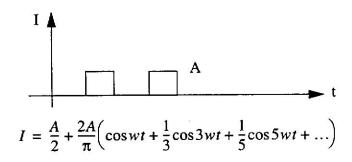

 V_{L0} is a local oscillator voltage with frequency 110 MHz and zero-peak amplitude of 60 mV. C_1 , C_2 , C_3 , C_4 and C_5 are large capacitors. The IF tank L_2 - C_6 - R_4 has Q = 20 and is tuned to 10 MHz. Device data: $\beta = 100$, $V_A = \infty$, rb = 0

- (a) Calculate the IF output voltage V_0 if a signal input at V_S has frequency 100 MHz and rms amplitude of 1 mV.
- (b) Harmonies in I_{C1} will cause harmonic mixing. Calculate the 10 MHz IF output voltage at V_0 produced by an input signal at V_S at 210 MHz and rms amplitude 0.1 mV.
- (c) What is the input impedance seen by V_S ?
- (d) Nonlinearity in Q_2 Q_3 will cause intermodulation. Calculate the 10 MHz IF output voltage at V_0 produced by two inputs at V_S with amplitude 10 mV rms each and frequencies of 101 MHz and 102 MHz.

Data for the differential pair:

$$\frac{I_{C3}}{I_{C1}} = \frac{1}{2} + \frac{1}{4} \frac{qV_S}{kT} - \frac{1}{48} \left(\frac{qV_S}{kT}\right)^3 + \dots$$

3) (17 points)



Device data:
$$I_0 = \frac{\mu Cox}{2} \times \frac{W}{L} (V_{GS} - V_t)^2$$

Neglect body effect

$$\mu Cox = 100 \times 10^{-6} \text{ A/V, Vt} = 0.7\text{V}, \quad \lambda = 0$$

The Fourier Series of a square wave is

- (a) Calculate the oscillation frequency and amplitude of the signal at V_x and V_0 . Assume the differential pair is driven to a square wave in steady state.
- (b) Calculate the initial loop gain.
- (c) Calculate HD_3 at Vx and HD_2 at V_0 in dB.
- (d) If the transformer has -45° excess phase, recalculate (a), (b), and (c).