An amplifier is shown below

The dc voltage at V_i is adjusted for $V_0 = 2V$ dc.

a) Calculate bias I_D and V_{GS} for each device.

b) Calculate HD_2 and HD_3 (in dB) in V_i and V_0 for a sinusoidal-signal voltage of 0.2V rms at V_0. Data as on P.S.5 but add $R_s = 25k\Omega / W(\mu m)$ in series with each source. Neglect charge storage and Early effect. Check using SPICE.

Hint: Start by deriving a power series for v_i as a function of v_1. Then derive v_1 as a function of v_i. Finally, cascade v_0 as a function of v_1. Neglect body effect in M_5 but not in M_3.
In the 50Ω transmission system shown below, a reverse-biased diode D is used to limit the amplitude of large negative voltage spikes on the line. However, the nonlinear capacitance of the diode causes distortion in \(v_0 \). The incremental diode capacitance at the bias point is represented by

\[
C = \frac{2}{\left(1 + \frac{V}{V_Q}\right)^{0.5}}
\]

where \(V_Q = 2V \) and \(v \) is the signal voltage on the diode. Capacitor C is a large coupling capacitor.

Calculate \(IM_2 \) in \(v_0 \) at \((\omega_1 - \omega_2)\) and \((\omega_1 + \omega_2)\) for two output signals in \(v_0 \) of equal amplitude 0.5V each and frequencies \(f_1 = 100 \text{ MHz} \) and \(f_2 = 101 \text{ MHz} \).