Switched-Capacitor Filters

• “Analog” sampled-data filters:
 – Continuous amplitude
 – Quantized time

• Applications:
 – Oversampled A/D and D/A converters
 – Analog front-ends (CDS, etc)
 – Standalone filters
 E.g. National Semiconductor LMF100
 – Replaced by ADC + DSP in many cases
Switched-Capacitor Resistor

- Capacitor C is the “switched capacitor”
- Non-overlapping clocks ϕ_1 and ϕ_2 control switches S1 and S2, respectively
- v_{IN} is sampled at the falling edge of ϕ_1
 - Sampling frequency f_S
- Why is this a resistor?
Switched-Capacitor Resistors

- The charge transferred from v_{IN} to v_{OUT} each sample period is:
 $$Q = C(v_{\text{IN}} - v_{\text{OUT}})$$

- The average current flowing from v_{IN} to v_{OUT} is:
 $$i = f_s C(v_{\text{IN}} - v_{\text{OUT}})$$
Switched-Capacitor Resistors

\[i = f_s C(v_{\text{IN}} - v_{\text{OUT}}) \]

With the current through the switched capacitor resistor proportional to the voltage across it, the equivalent “switched capacitor resistance” is:

\[R_{\text{EQ}} = \frac{1}{f_s C} \]

Of course this current flows in “bursts”—think of “big electrons”.

\[T = \frac{1}{f_s} \]
Switched-Capacitor Filter

- Let’s build an “SC” filter …
- We’ll start with a simple RC LPF
- Replace the physical resistor by an equivalent SC resistor
- 3-dB bandwidth:

\[\omega_0 = \frac{1}{R_{EQ}C_2} = f_S \frac{C_1}{C_2} \]
Switched-Capacitor Filters

- In SCFs, all critical frequencies track the sampling frequency
 - Crystal oscillators for f_S are stable to ~ 10ppm/$^\circ$C
 - RC products used in active-RC filters can be tuned, but RCs in active-RC filters don’t track together nearly as well

- Capacitor ratios in monolithic filters are perfectly stable over time and temperature
 - Capacitor ratios can’t be trimmed easily
 - The trick is to achieve initial ratio accuracies of ~ 1000ppm out of double-poly CMOS processes
Transient Analysis

1st Order RC / SC LPF

Transmission Analysis to 99us

No problem

Impractical

SC response: extra delay and steps with finite rise time.

exaggerated
Transient Analysis

- ZOH: pick signal after settling (usually at end of clock phase)
- Adds delay and sin(x)/x distortion
- When in doubt, use a ZOH in periodic ac simulations
Periodic AC Analysis

1st Order RC / SC LPF

\[fs = 1 \text{MHz} \]
\[fc = 500 \text{kHz} \]
\[fr = 3.571 \text{kHz} \]
Magnitude Response

1. RC filter output
2. SC output after ZOH
3. Input after ZOH
4. Corrected output
 - (2) over (3)
 - periodic with f_s
 - Identical to RC for $f << f_s/2$
Periodic AC Analysis

• SPICE frequency analysis
 – ac linear, time-invariant circuits
 – pac linear, time-variant circuits

• SpectreRF statements
 \[V1 (\text{Vi 0}) \text{ vs} \text{source type=} \text{dc} \text{ dc=} 0 \text{ mag=} 1 \text{ pacmag=} 1 \]
 \[\text{PSS1 pss period=} 1u \text{ errpreset=} \text{conservative} \]
 \[\text{PAC1 pac start=} 1 \text{ stop=} 1M \text{ lin=} 1001 \]

• Output
 – Divide results by sinc\((f/f_s) \) to correct for ZOH distortion
A/D DSP

Spectre Circuit File

rc_pac
simulator lang=spectre
ahdl_include "zoh.def"

S1 (Vi c1 phi1 0) relay ropen=100G rclosed=1 vt1=-500m vt2=500m
S2 (c1 Vo_sc phi2 0) relay ropen=100G rclosed=1 vt1=-500m vt2=500m
C1 (c1 0) capacitor c=314.159f
C2 (Vo_sc 0) capacitor c=lp
R1 (Vi Vo_rc) resistor r=3.1831M
C2rc (Vo_rc 0) capacitor c=lp
CLK1_Vphi1 (phi1 0) vsource type=pulse val0=-1 val1=1 period=1u
 width=450n delay=50n rise=10n fall=10n
CLK1_Vphi2 (phi2 0) vsource type=pulse val0=-1 val1=1 period=1u
 width=450n delay=550n rise=10n fall=10n
V1 (Vi 0) vsource type=dc dc=0 mag=1 pacmag=1
PSS1 pss period=1u errpreset=conservative
PAC1 pac start=1 stop=3.1M log=1001
ZOH1 (Vo_sc_zoh 0 Vo_sc 0) zoh period=1u delay=500n aperture=1n tc=10p
ZOH2 (Vi_zoh 0 Vi 0) zoh period=1u delay=0 aperture=1n tc=10p
module zoh (Pout, Nout, Pin, Nin) (period, delay, aperture, tc)

node [V,I] Pin, Nin, Pout, Nout;
parameter real period=1 from (0:inf);
parameter real delay=0 from [0:inf);
parameter real aperture=1/100 from (0:inf);
parameter real tc=1/500 from (0:inf);
{
 integer n; real start, stop;
 node [V,I] hold;
 analog
 // determine the point when aperture begins
 n = ($time() - delay + aperture) / period + 0.5;
 start = n*period + delay - aperture;
 $break_point(start);

 // determine the time when aperture ends
 n = ($time() - delay) / period + 0.5;
 stop = n*period + delay;
 $break_point(stop);

 // Implement switch with effective series resistance of 1 Ohm
 if (($time() > start) && ($time() <= stop))
 I(hold) <- V(hold) - V(Pin, Nin);
 else
 I(hold) <- 1.0e-12 * (V(hold) - V(Pin, Nin));

 // Implement capacitor with an effective capacitance of tc
 I(hold) <- tc * dot(V(hold));

 // Buffer output
 V(Pout, Nout) <- V(hold);

 // Control time step tightly during aperture and loosely otherwise
 if (($time() >= start) && ($time() <= stop))
 $bound_step(tc);
 else
 $bound_step(period/5);
}

Switched-Capacitor Noise

- The resistance of switch S1 produces a noise voltage on C with variance kT/C

- The corresponding noise charge is $Q^2 = C^2V^2 = kTC$

- This charge is sampled when S_1 opens
Switched-Capacitor Noise

- The resistance of switch S2 contributes to an uncorrelated noise charge on C at the end of ϕ_2.

- The mean-squared noise charge transferred from v_{IN} to v_{OUT} each sample period is $Q^2 = 2kTC$.

$$Q^2 = 2kTC$$
Switched-Capacitor Noise

- The mean-squared noise current due to S1 and S2’s kT/C noise is:

\[\overline{i^2} = (Qf_s)^2 = 2k_BT Cf_s^2 \]

- This noise is approximately white (see next slide) and distributed between 0 and \(f_s/2 \) (noise spectra are single sided by convention). The spectral density of the noise is:

\[\frac{\overline{i^2}}{\Delta f} = \frac{2k_BT Cf_s^2}{f_s/2} = \frac{4k_BT Cf_s}{R_{EQ}} \]
using \(R_{EQ} = \frac{1}{f_s C} \)

- The noise from an SC resistor equals the noise from a physical resistor with the same value!
SC Resistor Noise Spectrum

\[S_y(f) = \frac{k_B T_r}{C} \frac{2}{f_s} \frac{1 - e^{-2a}}{1 + e^{-2a}(1 - \cos 2\pi f/T)} \]

\[a = \frac{T}{R_{sw} C} \quad \text{and} \quad T = \frac{1}{f_s} \]

\[\int_{0}^{T/2} S_y(f) df = \frac{k_B T_r}{C} \]

- Noise essentially white for \(T/t > 3 \)
- Settling constraints ensure that this condition is usually met in practice
- Note: This is the noise density of an SC resistor only. The noise density from an SC filter is usually not white.
Periodic Noise Analysis

Sampling Noise from SC S/H

Netlist
ahdlInclude "zoh.def"

Netlist
simOptions options retol=10u vabstol=1n labstol=1p

PSS pss period=100n maxacfreq=1.5G errpreset=conservative
PNOISE (Vrc_hold 0) pnoise start=0 stop=20M lin=500 maxsideband=10
Sampled Noise Spectrum

Density of sampled noise with sinc distortion.

Normalized density of sampled noise, corrected for sinc distortion.
Total Noise

Sampled noise in
0 … $f_s/2$: $62.2\mu V \text{ rms}$

(expect $64\mu V$ for 1pF)
Opamps versus OTA

- Low impedance output
- Can drive R-loads
- Good for RC filters, OK for SC filters
- Extra buffer adds complexity, power dissipation

- High impedance output
- Cannot drive R-loads
- Ideal for SC filters
- Simpler than Opamp
Opamps versus OTA Noise

Opamp and switch noise add

\[
\sqrt{\frac{v_{oT}^2}{C}} = \frac{kT}{C} \left(1 + \frac{R_{\text{noise}}}{R_{\text{switch}}}\right)
\]

OTA contributes no excess noise (actual designs can increase noise)
Amplifier Bandwidth Requirements

SC Filter:

\[\tau \leq \frac{T}{10} = \frac{1}{10f_s} \]

for 16+ Bit settling accuracy

\[\tau = \frac{1}{\omega_u} = \frac{1}{2\pi f_u} \]

\[\rightarrow f_u \geq \frac{10}{2\pi} f_s \approx 2f_s \]

\[f_s = 8 \ldots 100 \times f_{\text{corner}} \]

\[f_u = 16 \ldots 200 \times f_{\text{corner}} \]

→ SC filters have comparable or slower amplifier bandwidth requirements than CT filters

CT Filter:

\[f_u = 50 \ldots 1000 \times f_{\text{corner}} \]
SC Filter Summary

✓ Pole and zero frequencies proportional to
 – Sampling frequency f_s
 – Capacitor ratios
 ➢ High accuracy and stability in response
 ➢ Low time constants realizable without large R, C
✓ Compatible with transconductance amplifiers
 – “No” excess opamp noise
 – Reduced circuit complexity, power
✓ Amplifier bandwidth requirements comparable to CT filters
 o Catch: Sampled data filter \rightarrow aliasing